The timeline of historic inventions is a chronological list of particularly important or significant technological inventions.
Note: Dates for inventions are often controversial. Inventions are often invented by several inventors around the same time, or may be invented in an impractical form many years before another inventor improves the invention into a more practical form. Where there is ambiguity, the date of the first known working version of the invention is used here.
Paleolithic era[]
- See also: Paleolithic
Note: BP means "Before Present".
- Indeterminate: Music, Language
- 2.4 Million BP: Struck stone tools in East Africa
- 2.4 Million BP: Olduwan (struck stone tools) in East Africa
- 1.8 Million BP: Controlled fire[1] in East Africa
- 1.8 Million BP: Cooking[2] in East Africa
- 1.65 Million BP: Acheulean (struck and reworked stone tools) in Kenya
- 1.4 Million BP: Knife in Ethiopia, East Africa
- 1 Million BP: Sterilization of food & water in East Africa
- 500,000 BP: Shelter construction[3]
- 500,000-100,000 BP: Clothing
- 400,000 BP: Pigment in Zambia,[4] Southern Africa
- 160,000-140,000 BP: Burial[5] in Africa
- 140,000 BP: Bone tools in Blombos Cave, South Africa
- 140,000 BP: Shellfishing in Blombos Cave, South Africa
- 115,000 to 11,000 BP: Calendar by hunter-gatherers during last glacial period[6]
- 110,000 BP: Beads in Palestine[7]
- 100,000: Jewellery (bead) in Northern Africa and Middle East[8]
- 100,000 BP: Lithic blades in Africa and Middle East
- 77,000 BP: Bedding in South Africa[9]
- 64,000 BP: Arrowhead in South Africa[10]
- 61,000 BP: Sewing needle in South Africa[10]
- 60,000 BP: Boat around Indian Ocean
- 60,000 BP: Ship in New Guinea, Southeast Asia
- 60,000 BP: Bow[11]
- 43,000 BP: Mining in Swaziland, Southern Africa
- 37,000 BP: Tally stick in Swaziland,[12] Southern Africa
- 36,000 BP: Cloth woven from flax fiber, in Georgia,[13][14] Western Asia
- 28,000 BP: Twisted rope[15]
- 25,000 BP: Atlatl in Northwest Africa [16]
- 16,000 BP: Pottery in China[17]
- 15,000 BP: Boomerang in Australia[18]
10th millennium BCE[]
- c. 10,000 BCE: Basket weaving
- c. 9500 BCE: Granary in the Jordan Valley
- Agriculture in the Fertile Crescent, Near East (Neolithic Revolution)
- Farming in the Fertile Crescent, Near East
- Farm in the Fertile Crescent, Near East
- Alcoholic beverage in the Fertile Crescent, Near East
- Adobe in the ancient Near East
- Domestrication in Southwest Asia
9th millennium BCE[]
- c. 8700 BCE: Metalworking in Mesopotamia (Iraq)
- c. 8700 BCE: Copper in Mesopotamia (Iraq)
- c. 8700 BCE: Copper pendant in Mesopotamia (Iraq)
- c. 8700 BCE: Pendant in Mesopotamia (Iraq)
- Milk in Southwest Asia
8th millennium BCE[]
- Animal husbandry in the ancient Near East
7th millennium BCE[]
- c. 7000 BCE: Dental drill in Mehrgarh, Pakistan[19]
- c. 7000 BCE: Drill in Mehrgarh, Pakistan
- c. 6200 BCE: Map in Çatalhöyük, Asia Minor
- Cloth woven from flax fiber
6th millennium BCE[]
- c. 6000 BCE: Kiln in Mesopotamia (Iraq)[20]
- c. 6000 BCE: Oven (kiln) in Mesopotamia (Iraq)[20]
- Irrigation in the Fertile Crescent (Near East)
- Beer in Sumer, Mesopotamia (Iraq)[18]
- City in Sumer, Mesopotamia (Iraq)
- Plough in Mesopotamia (Iraq)
- 5200–4700 BCE: Wheel in Tepe Pardis, Iranian Plateau[21]
5th millennium BCE[]
History of technology |
---|
By technological eras |
|
By historical regions |
|
By type of technology |
|
Technology timelines |
|
Outlines |
|
- 5000-4500 BCE: Lacquer in China[22]
- 5000-4500 BCE: Oar in China[23][24]
- 5000-4500 BCE: Rowing oar in China[23]
- Sailing in Mesopotamia (Iraq)[25]
- Beer in Egypt
- Bread in Egypt
- Beer and bread in Egypt
- Bow drill in Mehrgarh, Pakistan[26]
- Cotton at Mehrgarh (modern Pakistan) and Rakhigarhi (India)[27][28]
- Ice skate in Scandinavia[29]
- Iron in Iran[30]
- 4200–4000 BCE: Wheel-and-axle combination (potter's wheel) in Mesopotamia (Iraq)[21]
4th millennium BCE[]
- 4000 BCE: Canal in Mesopotamia (Iraq)
- 4000 BCE: Cobblestone in Ur, Sumer, Mesopotamia
- 4000 BCE: Paved street in Ur, Sumer, Mesopotamia
- 4000 BCE: Stone paved street in Ur, Sumer, Mesopotamia
- 3807-3806 BCE: Timber roadway at Sweet Track, England
- 3700–3500 BCE: Wheeled vehicle (wagon) in Eanna district of Uruk, Sumer, Mesopotamia[31]
- 3630 BCE: Silk in China
- 3600 BCE: Free-standing masonry architecture at Ġgantija, Gozo, Malta
- 3500 BCE: Plywood in Egypt
- c. 3500 BCE: Writing in Sumer, Mesopotamia
- c. 3400 BCE: Cuneiform in Sumer, Mesopotamia
- 3400 BCE: Opium in Sumer, Mesopotamia[32][33]
- c. 3500 BCE: Cart in Sumer, Mesopotamia* 3100 BCE: Drainage in the Indus Valley Civilization (India/Pakistan)
- 3300 BCE to 1300 BCE: Perfume in Indus Valley Civilization (modern Pakistan and India)[34]
- 3200 BCE: Sail in Egypt[35][36]
- 3200 BC: Sailing in Ancient Egypt[35][36]
- 3000 BCE: Reservoir in Girnar, Indus Valley Civilization[37]
- Bronze in Susa, Iran
- Comb in Persia (Iran)
- Cement in Egypt
- River boats in Egypt
- Noodle in China
- Pyramid (ziggurat) in Mesopotamia[38][39]
3rd millennium BCE[]
- 2800 BCE: Soap in Mesopotamia
- 2800 BCE: Button in the Indus Valley Civilization (India/Pakistan)
- 2800 BCE: Bathroom in the Indus Valley Civilization[40]
- 2800 BCE: Toilet in Mohenjo-daro, Indus Valley Civilization[40]
- 2700 BCE: Plumbing in the Indus Valley Civilization[40]
- 2700 BCE: Sanitary sewer in the Indus Valley Civilization[40]
- 2700 BCE: Sewage collection and disposal in the Indus Valley Civilization[40]
- 2700–2300 BCE: Abacus in Sumer, Mesopotamia[41]
- 2630-2611 BCE: Step pyramid: Imhotep in Egypt
- 2600s BCE: Papyrus: Imhotep in Egypt
- 2600s BCE: Suture: Imhotep in Egypt
- 2600s BCE: Pharmaceutical cream: Imhotep in Egypt
- 2600 BCE: Bangle in Mohenjo-daro, Indus Valley Civilization[42]
- 2600 BCE: Chariot in Mesopotamia
- 2600 BCE: Urban planning in the Indus Valley Civilization[43][44]
- 2500s BCE: Flush toilet in Harappa and Mohenjo-daro, Indus Valley Civilization[45]
- 2500s BCE: Stepwell in Mohenjo-daro, Indus Valley Civilization[46]
- 2500 BCE: Arch in Mohenjo-daro, Indus Valley Civilization[47]
- 2500 BCE: Animal-drawn plough in the Indus Valley Civilization[48]
- 2500 BCE: Puppet in the Indus Valley Civilization[49]
- 2500-1900 BCE: Furnace in Balakot, Indus Valley Civilization[50]
- 2500-900 BCE: Oven in Balakot, Indus Valley Civilization[50]
- 2400 BCE: Shipyard in Lothal, Indus Valley Civilization
- 2400 BCE: Dock in Lothal, Indus Valley Civilization[51]
- 2400 BCE: Ruler in Lothal, Indus Valley Civilization[52]
- 2332-2283 BCE: Galley: Pepi I in Egypt
- 2000 BCE: Cockfighting in the Indus Valley Civilization[53]
- 2000 BCE: Currency
- Dice in the Indus Valley Civilization[54]
- Dye in Mohenjo-daro, Indus Valley Civilization[55]
- Public bath in Mohenjo-daro, Indus Valley Civilization[56]
- Swimming pool in Mohenjo-daro, Indus Valley Civilization[57]
- Aqueduct in ancient Egypt and Indus Valley Civilization
- Candles in Egypt
- Dagger in Near East
- Sickle-sword in Sumer
- Alphabet in Phoenicia
- Ink in China
- Sewage system with flush toilets in the Indus Valley Civilization cities of Harappa and Mohenjo-daro (modern Pakistan)[58]
- Sledge in Egypt
- Ski in Scandinavia[18]
2nd millennium BCE[]
- c. 2000 BCE: Shaduf in Egypt and Mesopotamia
- c. 2000 BCE: Crane (Shaduf) in Egypt and Mesopotamia
- c. 2000 BCE: Pulley (Shaduf) in Egypt and Mesopotamia
- 2000 BCE: Counting board in Sumer (Mesopotamia) and Ancient Egypt[59]
- 2000 BCE: Chariot in Indo-Iranian Sintashta culture of Asian Steppe (modern Kazakhstan and Russia)[60]
- 2000 BCE: Fraction in Ancient Egypt
- 2000 BC: Positional notation (sexagesimal) originates from Babylonian numerals in Mesopotamia[61]
- 1971-1926 BCE: Obelisk: Senusret I in Egypt
- 1900 BCE: Veterinary medicine in ancient Egypt and Vedic India[62]
- 1800 BC: Steel in Kaman-Kalehöyük, Asia Minor (modern Turkey)[63][64]
- 1700 BC: Alphabet (Phoenician alphabet) in Phoenicia (modern Lebanon)[65]
- 1600 BC: Water clock by Amenemhet in Ancient Egypt[66]
- 1500 BC: Sundial at Valley of the Kings during Nineteenth Dynasty of Egypt[67]
- 1500 BC: Seed drill in Babylonia, Mesopotamia[68]
- 1500 BC: Coins in Phoenicia (modern Lebanon) or Lydia[69]
- 1500-400 BCE: Kabaddi in India[70]
- 1300–1000 BCE: Zinc in India[71]
- 1000s BCE: Coins in China
- 1000 BCE: Lens in Assyria
- c. 1000 BCE: Central heating: Ondol in Korea[72]
- c. 1000 BCE: Underfloor heating: Ondol in Korea[72]
- c. 1000 BCE: Dike in the Indus Valley Civilization[73]
- Perfume: Tapputi in Mesopotamia
- Bronze Age sword in Mesopotamia
- Glass in Egypt[74]
- Rubber in Mesoamerica
- Spoked-wheel chariot: Indo-Iranians
- Water clock in Egypt
- Bells in China
- Fork in China[75]
- Umbrella in Mesopotamia
- Calibration in the Indus Valley Civilization[76]
- Metrology in the Indus Valley Civilization[76]
- 1000 BC: Qanat (water system with aqueducts) in Iran[77][78]
1st millennium BCE[]
- Cautery in Asia Minor[79]
- Speculum in Asia Minor[79]
- Cross-bladed scissors in Asia Minor[79][80]
- Surgical needle in Asia Minor[79]
- Catapult in ancient Near East
- South Pointing Chariot in China
- Differential gear in China
- Flash lock in China
- Bookbinding in India
- Blowgun in India[81]
- Indigo dye in India[82]
- Iron pellet in India[81]
- Jute in Bengal[83]
- Prayer flags in India
- Rutway in Mesopotamia and Persia
- Toothbrush: Neem in India
- Foresail: Phoenicians[84]
- Two-masted ship: Phoenicians[84]
- Bireme ship: Phoenicians[84]
- Double-decker ship: Phoenicians (bireme)[84]
8th century BCE[]
- Sugar in the Indian subcontinent[85]
- 704 BC to 681 BC: Screw pump at the Hanging Gardens of Babylon or Nineveh in Mesopotamia[86][87]
7th century BCE[]
- c. 700 BCE: Chain in Mesopotamia
- c. 700 BCE: Chain pump in Babylonia[88]
- c. 700 BCE: Screw: Sennacherib in Mesopotamia
- c. 700 BCE: Screw pump: Sennacherib in Mesopotamia
- c. 700 BCE: Water screw: Sennacherib in Mesopotamia
- 700 BC: Chain pump in Babylonia, Mesopotamia[89]
6th century BCE[]
- c. 600 BCE: Chopsticks in China
- 600 BC Lighthouse in Egypt[90]
- Sugar in India
- Dental bridge in Etruria
- Kite: Lu Ban in China
- Plastic surgery: Sushruta in India
- Cosmetic surgery: Sushruta in India
- Rhinoplasty: Sushruta in India
- Cataract surgery: Sushruta[91] in India
- Rotary mill: Phoenicians in Carthage [4]
- Rotary quern: Phoenicians [5]
- Crank motion: Phoenicians (rotary mill/quern)
- Sakia in Persian Egypt
- Animal-powered water wheel in Persian Egypt
- Crucible steel (wootz steel) in South India and Sri Lanka[92][93][94]
5th century BCE[]
- Crossbow in Ancient China: In Ancient China, the earliest evidence of bronze crossbow bolts dates as early as the mid-5th century BC in Yutaishan, Hubei.[95]
- 500-100 BCE: Big-toe stirrup in India[96][97]
- 403-221 BCE: Cupola furnace in China[98]
- 403-221 BCE: Foundry in China[98]
5th century BCE[]
- 500 BCE: Iron plough in China
- 500 BCE: Heavy plough in China
- c. 500 BCE: Royal Road in Persian Empire
- c. 500 BCE: Highway in Persian Empire
- 499-477 BCE: Horse collar in China[99]
- 475 BCE: Scythed Chariot: Ajatashatru in India
- Linguistics: Pāṇini in India[100]
- Traction trebuchet in China
- Cast iron in China[101][102][103][104][105]
- Crossbow in China
- Lever in Egypt and China
4th century BCE[]
- Water wheel in ancient Near East,[106][107][108] and India[109]
- Hydropowered water wheel in Egypt
- Watermill in Persian Empire,[106] India[109] and Egypt
- Noria in Ancient Egypt[110] and India[109]
- Compass in China
- Star catalogues: Gan De and Shi Shen
- India ink in India[111]
3rd century BCE[]
- c. 300 BCE: Wootz steel in India[112]
- 300 BCE: Crucible steel in India
- 300-100 BCE: Pig iron in China
- 285 BCE: Suspension bridge in China
- 283-250 BCE: Canal lock and pound lock in Ancient Suez Canal, Egypt[113][114][115]
- 210 BCE: Chromium use in China
- 205-200 BCE: Dry dock in Egypt
- 202-201 BCE: Bellows in China
- Blast furnace in Sri Lanka[116] and China[101][117]
- Diamond gemstone in India[118]
- Clockwork in Egypt[119] and China
- Clockwork escapement mechanism in Egypt[119]
- Hydropowered Sakia in Egypt
- Odometer: Archimedes?
- Cashmere wool in India[120]
- Contour canal: Shi Lu in China
- Lock gate in China
- Stupa in India[121]
- Pagoda in India[121]
- Gear in Egypt and China
- Gear train in Egypt and China
- Valve tower sluice in Sri Lanka[122]
- Cam in Hellenistic world, used in water-driven automata.[123]
- Liquid-driven escapement in Hellenistic kingdoms described by Philo of Byzantium (c. 280 – 220 BC)[124]
- Sakia in Egypt[110]
2nd century BCE[]
- 150s BCE: Astrolabe in Eastern Mediterranean
- Parchment in Pergamon, Asia Minor
- Wheelbarrow in China[125]
1st century BCE[]
- 100 BCE: Trip hammer in China
- 52 BCE: Armillary sphere: Geng Shouchang in China
- 21 BCE: Collapsable umbrella: Wang Mang[126]
1st millennium CE[]
1st century[]
- 38 CE: Hydraulic-powered bellows: Du Shi
- 50 CE: Mouldboard plough in China and Gaul
- 77 CE: Encyclopedia (comprehensive work): Pliny the Elder[18]
- Junk ship in China
- Junk rudder in China[127]
- The aeolipile, a simple steam turbine recorded by Hero of Alexandria in Roman Egypt[128]
- 1-500: Fore-and-aft rig in India[129]
- 1-500: Kamal in India[130]
- 1-500: Prayer wheel: Tibet[131]
- 1-500: Three-masted merchant vessel in China[132]
- 1-500: Woodblock printing in China
- 1-500: Combination lock in Roman Empire[133]
- 78-139: Hydraulic-powered armillary sphere: Zhang Heng
- 78-139: Seismometer: Zhang Heng
- 1st century: Vending machines invented by Hero of Alexandria in Roman Egypt
- 1st century: Automatic doors invented by Hero of Alexandria in Roman Egypt
2nd century[]
- 105: Paper: Cai Lun in China[134]
- 132: Rudimentary Seismometer: Zhang Heng in China
- 180: Rotary fan: Ding Huan in China
- 180: Winnowing fan: Ding Huan in China
- Steam power in Egypt
- Vending machine in Egypt
- Force pump in Egypt
- Carding in India[135]
3rd century[]
- Kongming lantern (Hot air balloon) in China
- Proto-hospital: Bimaristan at the Academy of Gondishapur, Persia
- 200-400: Stepwell in India[136]
4th century[]
- Iron pillar in Delhi, India
- Corrosion-resistant iron: Iron pillar of Delhi in India[137]
- Toothpaste in Roman Egypt
5th century[]
6th century[]
- 589: Toilet paper: Yan Zhitui in China
- Chess: Chaturanga in India[140]
- Ludo: Pachisi in India[141]
- Incense clock in India[142][143]
- Ludo in India[141]
- 500-800: Lateen in India[129]
- 6th century: Chess (chaturanga) in Gupta India[144]
7th century[]
- 605: Fully-stone open-spandrel segmental arch bridge: Li Chun in China
- 618-700: Porcelain in China
- 618-907: Water-powered rotary fan in China
- 650: Windmill (Panemone windmill) in Islamic Persia[90]
- 673: Flamethrower: Kallinikos of Heliopolis in Syria ("Greek fire")
- 623-632: Ambulance: Muhammad in Arabia
- 623-632: Field hospital: Muhammad in Arabia
- 670-800: Amalgamation: Islamic chemists[145]
- 670-800: Ceration: Islamic chemists[145]
- 670-800: Dry distillation: Islamic chemists
- 670-800: Solution: Islamic chemists[145]
- 670-800: Sublimation: Islamic chemists[146][145]
- 670-800: Water purification: Islamic chemists[147]
- 670-800: Purified water: Islamic chemists[147]
- 670-800: Fusible alloy: Islamic chemists[145]
- 670-800: Petrol: Islamic chemists[148]
- 700: Quill pen
- 700: Indo-Arabic numeral system (positional decimal numerals) originates from Indian numerals in the Indian subcontinent[149]
8th century[]
- 707: Hospital: Bimaristan in Damascus, Syria
- 754: Apothecary: Islamic physicians[150] in Baghdad
- 754: Drugstore in Baghdad[151]
- 754: Pharmacy in Baghdad[151]
- 758-764: Tar pavement in Baghdad[152]
- 763-800: Public hospital: Harun al-Rashid[153]
- 763-800: Psychiatric hospital: Bimaristan in Baghdad[154]
- 794: Paper mill in Baghdad[155]
- Destructive distillation: Islamic chemists[152]
- Inoculation: Madhav in India[156]
- 700-900: Charitable trust in the Arab Empire[157][158]
- 700-1000: Spinning wheel in India[159]
- 721-815: Alembic: Geber (Jabir ibn Hayyan)[160]
- 721-815: Still: Geber[160]
- 721-815: Retort: Geber[161]
- 721-815: Filtration: Geber[146]
- 721-815: Crystallization: Geber[162]
- 721-815: Pure distillation: Geber[146]
- 721-815: Distilled alcohol: Geber[160]
- 721-815: Distilled wine: Geber[160]
- 721-815: Distilled beverage: Geber[160]
- 721-815: Mineral acid: Geber[163]
- 721-815: Nitric acid: Geber[163]
- 721-815: Hydrochloric acid: Geber[163]
- 721-815: Sulfuric acid: Geber[163][164]
- 721-815: Uric acid: Geber[165]
- 721-815: Acetic acid: Geber[162][166]
- 721-815: Citric acid: Geber[162]
- 721-815: Tartaric acid: Geber[162]
- 721-815: Aqua regia: Geber[163]
- 721-815: Cheese glue: Geber[167]
- 721-815: Plated mail: Geber[167]
- 721-815: Lustreware: Geber[168]
- 721-815: Tin-glazing: Geber[169]
- 721-815: Cucurbit: Geber[145]
- 721-815: Evacuation tube: Geber[145]
- 721-815: Aludel: Geber[145]
- 721-815: Artificial pearl[167]
- 721-815: Purified pearl[167]
- 721-815: Dyed pearl[167]
- 721-815: Dyed gemstone [167]
- 721-815: Artificial gemstone[167]
- 721-925: Rose water: Geber, Al-Kindi (Alkindus), Muhammad ibn Zakarīya Rāzi (Rhazes)[145]
- 721-925: Heated bath: Geber, Al-Kindi, Muhammad ibn Zakarīya Rāzi[145]
- 721-925: Sand bath: Geber, Al-Kindi, Muhammad ibn Zakarīya Rāzi[145]
- 721-925: Funnel: Geber, Al-Kindi, Muhammad ibn Zakarīya Rāzi[145]
- 721-925: Sieve: Geber, Al-Kindi, Muhammad ibn Zakarīya Rāzi[145]
- 721-925: Filter: Geber, Al-Kindi, Muhammad ibn Zakarīya Rāzi[145]
- 763-809: Public hospital: Bimaristan in Baghdad, Iraq
- 8th century: Bowed string instrument (rebab) in Islamic world[170]
- 8th century: Damascus steel in Syria[171][172]
- 8th century: Factory in Islamic world[173]
- 8th century: Lute (oud) in Islamic world[174]
- 8th century: Mobile hospital (ambulance) in Abbasid Caliphate[175]
- 8th century: Water-powered papermaking (pulp mill) in Samarkand[176]
- 8th century: Rib vault in Islamic architecture[177]
- 8th century: Soft drink (sharbat) in the Islamic world[178]
- 794–795: Paper mill in Baghdad, Abbasid Caliphate[179]
- 8th century: Paper bookbinding in Islamic world[180]
- 8th century: Paper cheque in Islamic world[181]
- 717–786: Probability and statistics by Al-Khalil[182]
- 8th century to 9th century: Cryptography by Arab mathematicians[183]
9th century[]
- 800-850: Quadrant: Muhammad ibn Mūsā al-Khwārizmī (Algorismi)[184]
- 800-850: Mural instrument: Muhammad ibn Mūsā al-Khwārizmī[184]
- 800-850: Sine quadrant: Muhammad ibn Mūsā al-Khwārizmī[184]
- 800-850: Horary quadrant: Muhammad ibn Mūsā al-Khwārizmī[184]
- 800-850: Alhidade: Muhammad ibn Mūsā al-Khwārizmī[185]
- 800-857: Under-arm deodorant: Ziryab[186]
- 800-857: Beauty parlour: Ziryab[187]
- 800-857: Bangs: Ziryab[187]
- 800-857: Chemical depilatory: Ziryab[187]
- 800-873: Valve: Banū Mūsā in Iraq[188]
- 800-873: Float valve: Banū Mūsā[188]
- 800-873: Feedback controller: Banū Mūsā[188]
- 800-873: Float chamber: Banū Mūsā[189]
- 800-873: Automatic control: Banū Mūsā[189]
- 800-873: Automatic flute player: Banū Mūsā[190]
- 800-873: Programmable machine: Banū Mūsā[190]
- 800-873: Trick drinking vessels: Banū Mūsā[191]
- 800-873: Gas mask: Banū Mūsā[191]
- 800-873: Grab: Banū Mūsā[191]
- 800-873: Clamshell grab: Banū Mūsā[191]
- 800-873: Fail-safe system: Banū Mūsā[191]
- 800-873: Mechanical musical instrument: Banū Mūsā[192]
- 800-873: Hydropowered organ: Banū Mūsā[192]
- 800-873: Hurricane lamp: Banū Mūsā[191]
- 800-873: Self-feeding oil lamp: Banū Mūsā[191]
- 800-873: Self-trimming oil lamp: Ahmad ibn Mūsā ibn Shākir[191]
- 801-873: Pure alcohol: Al-Kindi (Alkindus)[193]
- 810-887: Glass from stones: Abbas Ibn Firnas in al-Andalus[194]
- 810-887: convex lens
- 810-887: Clear colourless high-purity glass: Abbas Ibn Firnas[194][195]
- 810-887: Metronome: Abbas Ibn Firnas[196]
- 810-887: Artificial weather simulation: Abbas Ibn Firnas[196]
- 813-833: Medical school: Al-Ma'mun[153]
- 827: Mechanical singing bird automaton: Al-Ma'mun[197]
- 852: Parachute: Abbas Ibn Firnas in al-Andalus[165]
- 859: University: Fatima al-Fihri[198][199]
- 875: Hang glider: Abbas Ibn Firnas[196][200]
- 875: Artificial wing: Abbas Ibn Firnas[196][200]
- 875: Flight control frame: Abbas Ibn Firnas[196][200]
- c. 865-900: Kerosene: Muhammad ibn Zakarīya Rāzi (Rhazes) in Iraq[152][201]
- Muslin in Dhaka, Bengal[202][203]
- Stonepaste ceramics in Iraq[204]
- Black powder in China
- Gunpowder in China
- Water turbine in the Arab Empire[191]
- Universal sundial in Baghdad[205]
- Universal horary dial in Baghdad[206][207]
- Vertical-axle windmill in Afghanistan[208]
- Naphtha in Azerbaijan[152]
- Oil well in Azerbaijan[152]
- College: Madrasah in the Muslim world[209]
- c. 800-1000: Switch: Arabic engineers[210]
- 800-1000: Wind powered gristmills in Afghanistan, Pakistan and Iran[211]
- 800-1000: Sugar refinery in Afghanistan, Pakistan and Iran[211]
- 800-1000: Metal block printing in Egypt[212]
- 800-1000: Almucantar quadrant: Arabic astronomers[213]
- 800-1000: Navigational astrolabe: Arabic astronomers[214]
- 800-1000: Vertical sundial: Arabic astronomers[215]
- 800-1000: Polar sundial: Arabic astronomers[215]
- 800-1000: Coffee: Khalid in Ethiopia
- 800-1000: Shaving soap: Arabic chemists
- 800-1000: Plumb line: Arabic engineers[216]
- 800-1000: Reed level: Arabic engineers[216]
- 800-1000: Triangulation: Arabic engineers[216]
- 800-1000: Geared gristmill: Arabic engineers[217]
- 800-1000: Shatranj in Persia
- 800-1000: Paned window in the Arab Empire[218]
- 800-1000: Street lamp in the Arab Empire[218]
- 800-1000: Sherbet in the Arab Empire[219]
- 800-1000: Soft drink in the Arab Empire[219][220]
- 800-1000: Syrup in the Arab Empire[219]
- 800-1000: Mercury escapement mechanism in the Middle East
- 800-1000: Bridge dam in Iran[221]
- 800-1000: Milling dam in Iran[221][222]
- 800-1000: Diversion dam in Iraq[221]
- 800-1000: Public library in the Arab Empire[223]
- 800-1000: Lending library in the Arab Empire[223]
- 800-1000: Library catalog in the Arab Empire[224]
- 800-1000: Firecracker in China
- 800-1000: Snakes and ladders in India
- 801-1000: Municipal solid waste handling: Al-Kindi, Qusta ibn Luqa, Muhammad ibn Zakarīya Rāzi, Ibn Al-Jazzar, al-Masihi[225]
- 836-1000: Erectile dysfunction treatment: Muhammad ibn Zakarīya Rāzi, Thabit bin Qurra (Thebit), Ibn Al-Jazzar[226]
- 853-929: Observation tube: Muhammad ibn Jābir al-Harrānī al-Battānī (Albatenius)[227]
- 865-925: Hard soap: Muhammad ibn Zakarīya Rāzi[228]
- 865-925: Chemotherapy: Muhammad ibn Zakarīya Rāzi[229]
- 865-925: Antiseptic: Muhammad ibn Zakarīya Rāzi[152]
- 820: Algebra by Al-Khwarizmi[230]
- 801–873: Alcohol distillation by Al-Kindi[231][232][233]
- 801–873: Fragrance extraction (rose oil) by Al-Kindi[234]
- 9th century: Anasthetic compound by Islamic physicians[235]
- 9th century: Gunpowder in Tang Dynasty China; gunpowder is, according to prevailing academic consensus, discovered in the 9th century by Chinese alchemists searching for an elixir of immortality.[236] Evidence of gunpowder's first use in China comes from the Five Dynasties and Ten Kingdoms period (618–907).[237] The earliest known recorded recipes for gunpowder are written by Zeng Gongliang, Ding Du, and Yang Weide in the Wujing Zongyao, a military manuscript compiled in 1044 during the Song Dynasty (960–1279).[238][239][240]
- 9th century: Muslin fabric in Bengal[203]
- 9th century: Numerical zero in the Indian subcontinent; the concept of zero as a number, and not merely a symbol for separation is attributed to India.[241] In India, practical calculations are carried out using zero, which is treated like any other number by the 9th century, even in case of division.[241][242]
- 9th century: Sugar mill in Islamic world[243]
- 9th century: Syringe by Ammar al-Mawsili[244][245]
- 9th century: Windpump in Afghanistan, Iran and Pakistan[246]
- 850: Conical valve by Banu Musa brothers[247]
- 850: Gas mask by Banu Musa brothers[248][249]
- 850: Grab by Banu Musa brothers[250]
- 850: Automatic flute player, the first music sequencer and the earliest programmable automated music technology, by Banu Musa brothers[251][252]
- 852: Parachute by Armen Firman[253]
- 809–887: Glider by Abbas ibn Firnas[254][255][256]
- 859: University (Al-Karaouine) by Fatima al-Fihri in Morocco[230]
- 854–925: Antiseptic alcohol by Muhammad ibn Zakariya al-Razi[245]
- 854–925: Bar soap by Muhammad ibn Zakariya al-Razi[257]
- 854–925: Petroleum distillation (kerosene) by Muhammad ibn Zakarīya Rāzi[258][259]
- 854–925: Kerosene lamp (naphtha lamp) by Muhammad ibn Zakariya al-Razi[260][261]
- 854–925: Sulfuric acid by Muhammad ibn Zakariya al-Razi[262][263]
10th century[]
- 903-986: Timekeeping astrolabe: Abd al-Rahman al-Sufi (Azophi)[264]
- 904: Fire Arrow in China
- 919: Double-piston flamethrower in China
- 984: Pound lock: Qiao Weiyo
- 953: Fountain pen: Al-Muizz Lideenillah of Egypt[165][265][266]
- 960-1000: Restaurant in the Arab Empire[267]
- 994: Astronomical sextant: Abu-Mahmud al-Khujandi in Persia[268]
- 996: Geared mechanical astrolabe: Abū Rayhān al-Bīrūnī[269]
- Banknote in China
- Fire lance in China
- Gun in China
- Milling factory in Baghdad[270]
- Cartographic grid in Baghdad[271]
- Graph paper in the Arab Empire[272][273][274]
- Horizontal-axle windmill in Afghanistan, Pakistan and Iran[208]
- 10th century: Arabic numerals (Western Arabic numeral symbols) in Islamic North Africa[275]
- 10th century: Decimal fractions by Abu'l-Hasan al-Uqlidisi[276][277]
- 931–974: Fountain pen in Fatimid Caliphate during reign of Al-Mu'izz li-Din Allah[278]
- 994: Mural sextant constructed in Ray, Iran, by Abu-Mahmud al-Khujandi.[279]
- 1000: Dental extraction and replantation by Al-Zahrawi[280][281]
- 1000: Migraine surgery by Al-Zahrawi[282]
- 1000: Surgical needle by Al-Zahrawi[245]
2nd millennium[]
11th century[]
- c. 1000: Pendulum: Ibn Yunus in Egypt[283]
- c. 1000: Injection syringe: Ammar ibn Ali al-Mawsili of Iraq[152][284][285]
- c. 1000: Hypodermic needle: Ammar ibn Ali al-Mawsili[284][285]
- c. 1000: Cataract extraction: Ammar ibn Ali al-Mawsili[284][285]
- c. 1000: Suction: Ammar ibn Ali al-Mawsili[284][285]
- 1000: Ligature: Abu al-Qasim al-Zahrawi (Abulcasis) in Al-Andalus[286]
- 1000: Adhesive plaster: Abu al-Qasim[287]
- 1000: Curette: Abu al-Qasim[288]
- 1000: Retractor: Abu al-Qasim[288]
- 1000: Scalpel: Abu al-Qasim[289]
- 1000: Lithotomy scalpel: Abu al-Qasim[289]
- 1000: Surgical needle: Abu al-Qasim[290]
- 1000: Surgical catgut: Abu al-Qasim
- 1000: Surgical hook: Abu al-Qasim[288]
- 1000: Surgical rod: Abu al-Qasim[288]
- 1000: Surgical spoon: Abu al-Qasim[288]
- 1000: Inhalational anaesthetic: Abu al-Qasim[152][291]
- 1000: Anaesthetic sponge: Abu al-Qasim[152][291]
- 1000: Oral anaesthesia: Abu al-Qasim[152][291]
- 1000: Cotton dressing: Abu al-Qasim[292]
- c. 1000-1009: Monumental astrolabe: Ibn Yunus[293]
- c. 1000-1020: Heliocentric astrolabe: Al-Sijzi[294]
- c. 1000-1037: Thermometer: Avicenna (Ibn Sina) in Persia[295]
- c. 1000-1037: Air thermometer: Avicenna in Persia
- c. 1000-1037: Thermoscope: Avicenna in Persia
- c. 1000-1037: Essential oil: Avicenna[296] in Persia
- c. 1000-1048: Orthographical astrolabe: Abū Rayhān al-Bīrūnī in Persia[297]
- c. 1000-1048: Planisphere: Abū Rayhān al-Bīrūnī[297][298]
- c. 1000-1048: Star chart: Abū Rayhān al-Bīrūnī[298]
- c. 1000-1048: Laboratory flask: Abū Rayhān al-Bīrūnī[299]
- c. 1000-1048: Pycnometer: Abū Rayhān al-Bīrūnī[299]
- c. 1000-1048: Conical measure: Abū Rayhān al-Bīrūnī[300]
- c. 1000-1048: Geared mechanical lunisolar calendar analog computer: Abū Rayhān al-Bīrūnī[301]
- c. 1000-1048: Fixed-wired knowledge processing machine: Abū Rayhān al-Bīrūnī[302]
- 1020: Mechanical astrolabe: Ibn Samh in Al-Andalus[303]
- 1021: Magnifying glass: Ibn al-Haytham[304]
- 1021: Curved mirror: Ibn al-Haytham[305][306]
- 1021: Pinhole camera: Ibn al-Haytham[307]
- 1021: Camera obscura: Ibn al-Haytham[307]
- 1021: Novel: Murasaki Shikibu[308]
- 1021: Historical novel: Murasaki Shikibu[309]
- 1021: Psychological novel: Murasaki Shikibu[310]
- 1025: Cancer therapy: Avicenna[292][311]
- 1025: Hirudotherapy: Avicenna[312]
- 1025: Medicinal leech: Avicenna[312]
- 1025: Calcium channel blocker: Avicenna[313]
- 1025: Pharmacopoeia: Avicenna[314][315]
- 1028-1087: Equatorium: Abū Ishāq Ibrāhīm al-Zarqālī (Arzachel) in Al-Andalus[316]
- 1028-1087: Universal astrolabe: Abū Ishāq Ibrāhīm al-Zarqālī
- 1031-1095: Raised-relief map: Shen Kuo[317][318]
- 1038-1075: Flywheel: Ibn Bassal in Al-Andalus[319]
- 1041: Movable type printing press: Bi Sheng in China
- 1044: Hand grenade: Zhen Tian Lei in China
- 1087: Almanac: Abū Ishāq Ibrāhīm al-Zarqālī[320]
- 1088: Mechanical clock: Su Song
- 1088: Clock tower: Su Song
- 1088: Magnetic compass: Shen Kuo in China
- 1090: Belt drive: Qin Guan in in China
- 1090: Chain drive in China
- 1092: Astronomical clock: Su Song
- 1094: Printed star chart: Su Song
- Calico in India[321]
- Coke fuel in China
- Complex gearing: Ibn Khalaf al-Muradi in Al-Andalus[189]
- Epicyclic gearing: Ibn Khalaf al-Muradi in Al-Andalus[189]
- Segmental gearing: Ibn Khalaf al-Muradi in Al-Andalus[189]
- Geared mechanical clock: Ibn Khalaf al-Muradi in Al-Andalus[189]
- Weight-driven mechanical clock: Arabic engineers[189]
- Celestial globe: Arabic astronomers
- Glass mirror in Al-Andalus[152]
- Clear glass mirror in Al-Andalus[152]
- Cobwork in the Maghreb and Al-Andalus[322]
- 1000–1050: Planisphere by Al-Biruni[323]
- 1010: Novel (Tale of Genji) by Lady Murasaki[324][325]
- 1021: Camera obscura by Ibn al-Haytham[326][327][328]
- 1021: Magnifying glass (convex lens) by Ibn al-Haytham[329]
- 1021: Scientific method by Ibn al-Haytham[330][331]
- 1030: Paper packaging in Cairo, Egypt[332]
- 1030: Spinning wheel in the Islamic world[333]
- 11th century: Disinfectant by Arab physicians[334]
- 11th century: Double-entry bookkeeping system by Jewish community in the medieval Middle East.[335][336]
- 11th century: Geared clock by Al-Muradi[337][338]
- 11th century: Weight-driven clock by Arabic engineers in Al-Andalus[337]
- 1029–1087: Equatorium by Abū Ishāq Ibrāhīm al-Zarqālī[339]
- 1038–1075: Mechanical flywheel by Ibn Bassal in Al-Andalus[340][341]
- 1088: Movable type printing in Song Dynasty China; the first record of a movable type system is in the Dream Pool Essays, which attributes the invention of the movable type to Bi Sheng.[342][343][344][345]
12th century[]
- c. 1100: Framed bead abacus in China
- 1100-1150: Torquetum: Jabir ibn Aflah (Geber)[346]
- 1100-1161: Tracheotomy: Ibn Zuhr (Avenzoar) in Al-Andalus[290]
- 1119: Watertight hull compartment: Zhu Yu in China
- 1121: Steelyard: Al-Khazini in Persia[299]
- 1121: Hydrostatic balance: Al-Khazini[299]
- 1126: Fire arrow: Li Gang in China
- 1126: Rocket: Li Gang in China
- 1128: Cannon in China[347]
- 1135-1200: Linear astrolabe: Sharaf al-Dīn al-Tūsī in Persia[348]
- 1150: Homing pigeons in Iraq and Syria[349]
- 1154: Striking clock: Al-Kaysarani in Syria[350]
- 1187: Counterweight trebuchet: Mardi bin Ali al-Tarsusi[351][352]
- 1187: Mangonel: Mardi bin Ali al-Tarsusi[353]
- 1190: Mariner's compass in Italy[354]
- Astrolabic quadrant in Egypt[355]
- Ventilator in Egypt[356]
- Bridge mill in Al-Andalus[222]
- Hydropowered forge in Al-Andalus[211]
- Finery forge in Al-Andalus[211]
- Central heating through underfloor pipes in Syria[357]
- Fireworks in China
- Sunglasses in China
- 1100–1150: Torquetum by Jabir ibn Aflah[358]
- 12th century: Sugar refinery in Egypt[359]
- 1187: Counterweight trebuchet by Mardi ibn Ali al-Tarsusi[360][361]
- 1200: Guitar (guitarra morisca and guitarra latina) in Spain[362]
- 1188–1248: Essential oil by Ibn al-Baitar[363]
13th century[]
- 1206: Bolted joint lock[191]
- 1206: Clock automaton: Al-Jazari
- 1206: Flow control regulator: Al-Jazari
- 1206: Closed-loop system: Al-Jazari
- 1206: Elephant clock: Al-Jazari
- 1206: Hand washing device: Al-Jazari
- 1206: Kitchen appliance: Al-Jazari
- 1206: Camshaft: Al-Jazari[364]
- 1206: Segmental gear: Al-Jazari[365]
- 1206: Suction pipe: Al-Jazari
- 1206: Suction piston pump: Al-Jazari[337]
- 1206: Reciprocating piston motion: Al-Jazari[337]
- 1206: Double-acting engine: Al-Jazari[337]
- 1206: Humanoid robot: Al-Jazari[366]
- 1206: Programmable robot: Al-Jazari[366]
- 1206: Programmable analog computer: Al-Jazari[367]
- 1206: Automatic gate: Al-Jazari[368]
- 1206: Pointer: Al-Jazari[191][368]
- 1206: Hydropowered water supply system: Al-Jazari[368]
- 1206: Geared water supply system: Al-Jazari[368]
- 1206: Laminate: Al-Jazari[191]
- 1206: Mechanical template: Al-Jazari[191]
- 1206: Paper model: Al-Jazari[191]
- 1206: Calibration: Al-Jazari[191]
- 1206: Sand casting: Al-Jazari[191]
- 1206: Emery powder: Al-Jazari[191]
- 1206: Crankshaft-driven chain pump: Al-Jazari[369]
- 1206: Hydropowered saqiya chain pump: Al-Jazari[370]
- 1206: Intermittent working: Al-Jazari[369]
- 1206: Hour hand: Al-Jazari[248][371]
- 1232: Rocket launcher in China
- 1235: Geared astrolabe with analog computer calendar: Abi Bakr of Isfahan[372]
- 1259: Research institute: Nasīr al-Dīn al-Tūsī[373]
- 1259: Observatory institution: Nasīr al-Dīn al-Tūsī[373]
- 1260: Hand cannon in Egypt[163][374]
- 1260: Explosive gunpowder in Egypt[163][374]
- 1260: Explosive cannon in Egypt[163][374]
- 1260: Handgun in Egypt[163][374]
- 1260: Portable firearm in Egypt[163][374]
- 1260: Cartridge in Egypt[374]
- 1260: Dissolve talc in Egypt[374]
- 1260: Fire protection in Egypt[374]
- 1260: Fireproof clothing in Egypt[374]
- 1270: Pure saltpetre: Hasan al-Rammah of Syria[163][374]
- 1274: Siege cannon: Abu Yaqub Yusuf[374]
- 1275: Torpedo: Hasan al-Rammah of Syria
- 1275: Restaurant menu in China
- 1277: Land mine: Lou Qianxia in China
- c. 1296: Astronomical compass: Yemeni sultan al-Ashraf[375]
- 1297-1298: Wooden movable type printing: Wang Zhen of China [376]
- Crankshaft-driven screw: Arabic engineers[377]
- Crankshaft-driven screwpump: Arabic engineers[377]
- Sandpaper in China
- Solid-fuel rocket in China
- Condom in Italy
- Snakes and ladders in India[378]
- 1206: Bayonet mount by Ismail al-Jazari[379]
- 1206: Two-cylinder reciprocating piston pump with double-action piston mechanism by Ismail al-Jazari[380]
- 1206: Crankshaft first appears in two water-lifting machines by Ismail al-Jazari[381]
- 1206: Crank-slider mechanism by Ismail al-Jazari[382]
- 1206: Laminated timber, paper model and calibrated orifice by Al-Jazari[383]
- 1206: Programmable humanoid robots (musical automata band) by Al-Jazari[384][385][386]
- 1234: Metal movable type printing in Korea[387][388]
- 13th century: Caravel in Al-Andalus[389]
- 1270: Torpedo by Hasan al-Rammah[390]
- 13th century: Sitar by Amir Khusrow in India's Delhi Sultanate[391][392]
14th century[]
- 1304-1375: Astrolabic clock: Ibn al-Shatir[393]
- 1304-1375: Compendium instrument: Ibn al-Shatir[215]
- 1304-1375: Compass dial: Ibn al-Shatir[394]
- 1350: Rope bridge in Peru
- 1355: Bombard: Jiao Yu and Liu Ji
- 1355: Booster: Jiao Yu and Liu Ji
- 1355: Matchlock: Jiao Yu and Liu Ji
- 1355: Multistage rocket: Jiao Yu and Liu Ji
- 1355: Naval mine: Jiao Yu and Liu Ji
- 1355: Round shot: Jiao Yu and Liu Ji
- 1355: Shell: Jiao Yu and Liu Ji
- 1355: Wheellock: Jiao Yu and Liu Ji
- 1371: Polar-axis sundial: Ibn al-Shatir[395]
- 32-point compass rose in the Arab world[396]
- Arquebus in China and Middle East
- Katana in Japan
- Spherical astrolabe in the Middle East
- 13th century to 14th century: Cotton gin with worm gear in India's Delhi Sultanate[397]
- 13th century to 1540: Draw bar in Delhi, India, during the Delhi Sultanate or Mughal Empire[398]
- 14th century to 16th century: Cotton gin with crank handle in northern India during the late Delhi Sultanate or the early Mughal Empire[399]
15th century[]
- 1400-1429: Plate of conjunctions: Jamshīd al-Kāshī[400][401]
- 1400-1429: Planetary analog computer: Jamshīd al-Kāshī[401][402][403]
- 1405-1433: Troopship: Zheng He
- 1405-1433: Treasure ship: Zheng He
- 1441: Rain gauge: Jang Yeong-sil
- 1450s: Alphabetic movable type printing press: Johannes Gutenberg
- 1451: Concave lens for eyeglasses: Nicholas of Cusa
- 1490-1492: Terrestrial globe: Martin Behaim
- 1494: Double-entry bookkeeping system: Luca Pacioli
- 1498: Bristle toothbrush: Hongzhi Emperor
- Iron-chain suspension bridge in China
- Early 15th century: Matchlock arquebus in Ottoman Empire[404]
- Mid-15th century: Coffee in Sufi monasteries of Yemen, Southern Arabia.[405][406]
- 1465: Musket in Ottoman Empire[407]
16th century[]
- c. 1500: Ball bearing: Leonardo Da Vinci in Italy
- c. 1500: Scissors: Leonardo Da Vinci in Italy
- 1524: Pocket watch: Peter Henlein[408]
- 1540: Ether: Valerius Cordus
- 1551: Steam turbine: Taqi al-Din in Ottoman Egypt[409]
- 1556: Spring-powered clock: Peter Henlein and Taqi al-Din[408][410]
- 1556: Spring-powered minutes pocket watch: Taqi al-Din[408] in Ottoman Egypt
- 1559: Six-cylinder pump: Taqi al-Din[411] in Ottoman Egypt
- 1565: Pencil: Conrad Gesner[18][412]
- 1570s: Telescope: Taqi al-Din[413] in Ottoman Empire
- 1577-1580: Mechanical seconds clock: Taqi al-Din[414][415] at Istanbul observatory, Ottoman Turkey
- 1579: Prefabricated home: Akbar the Great[416] in Mughal India
- 1579: Movable structure: Akbar the Great[416] in Mughal India
- c. 1580: Hookah: Hakim Abul Fateh Gilani in Mughal India[417][418][419]
- 1582: Autocannon: Fathullah Shirazi[420] in Mughal India
- 1582: Multi-barrel gun: Fathullah Shirazi[420] in Mughal India
- 1582: Grain-griding carriage: Fathullah Shirazi[421] in Mughal India
- 1589: Stocking frame: William Lee
- 1589-1590: Seamless celestial globe: Ali Kashmiri ibn Luqman in Kashmir, Mughal India[422]
- 1589-1590: Seamless metal sphere: Ali Kashmiri ibn Luqman[422] in Kashmir, Mughal India
- c. 1590: Compound microscope: Zacharias Janssen, Hans Janssen, Hans Lippershey [423]
- 1592: Ironclad Warship: Yi Sun-sin in Korea
- 1593: Thermoscope: Galileo Galilei in Italy
- 1596: Water closet: John Harrington & Thomas Crapper
- Chintz in India[424]
- Pencil in England
- High-rise apartment buildings in Shibam, Yemen [425]
- Tower blocks in Shibam, Yemen[426]
- Vertical construction urban planning in Shibam, Yemen[425]
- Shuriken in Japan
- Concealed weapon in Japan
- 1514-1605: Hookah water pipe by Ahli Shirazi (Safavid Persia) and Irfan Shaikh (Mughal India)[427]
- 1551: Taqi ad-Din describes a steam turbine used in steam jacks.[428] It was the first impulse steam turbine.[429]
- 1551: Rag-and-chain pump by Taqi ad-Din Muhammad ibn Ma'ruf[430]
- 1551: Six-cylinder pump by Taqi ad-Din Muhammad ibn Ma'ruf[431]
- 16th century: Marching band (Ottoman military band) in the Ottoman Empire[432]
- 1577–1580: Parallel rulers by Taqi ad-Din Muhammad ibn Ma'ruf at the Constantinople Observatory of Taqi ad-Din[433]
- 1582: A rapid-fire multi-barrel volley gun with a matchlock trigger is invented by Fathullah Shirazi for Akbar the Great in Mughal India.[434][435]
- 1542-1605: Metal-cylinder rocket deployed by Akbar the Great in Mughal India.[436]
17th century[]
- 1609: Telescope: Hans Lippershey, Zacharias Janssen, Jacob Metius[437]
- 1610: Flintlock: Marin le Bourgeoys
- 1620: Slide rule: William Oughtred
- 1623: Automatic calculator: Wilhelm Schickard
- 1631: Vernier scale: Pierre Vernier
- 1642: Adding machine: Blaise Pascal
- 1643: Barometer: Evangelista Torricelli
- 1645: Vacuum pump: Otto von Guericke
- 1657: Pendulum clock: Christiaan Huygens
- 1672: Steam car: Ferdinand Verbiest[438][439]
- 1679: Pressure cooker: Denis Papin
- 1690: Polhem wheel: Christopher Polhem
- 1698: Steam engine powered water pump: Thomas Savery
- 1700: Piano: Bartolomeo Cristofori
- Palampore in India[440][441]
- 1621: Rack-and-pinion mechanism in Turkish muskets of the Ottoman Empire[442]
- 1633: Rocket flight by Lagâri Hasan Çelebi[443][444]
- 17th century: Banjo in West Africa[445]
- 17th century: Flush deck in Bengal Subah, Mughal Empire (modern Bangladesh)[446]
- 17th century: Roller mill in Mughal India[398]
18th century[]
- 1709: Iron smelting using coke: Abraham Darby I
- 1712: Steam piston engine: Thomas Newcomen
- 1714: Mercury thermometer: Daniel Gabriel Fahrenheit
- 1737: Marine chronometer (H1): John Harrison
- 1742: Franklin stove: Benjamin Franklin
- 1750: Flatboat: Jacob Yoder
- 1752: Lightning rod: Benjamin Franklin
- 1759: Shampoo: Sake Dean Mahomet of Bengal
- 1764: Spinning jenny: James Hargreaves/Thomas Highs
- 1767: Carbonated water: Joseph Priestley
- 1769: Water frame: Richard Arkwright/Thomas Highs
- 1775: Submarine Turtle: David Bushnell
- 1776: Steamboat: Claude de Jouffroy
- 1776: Watt steam engine: James Watt
- 1777: Card teeth making machine: Oliver Evans
- 1777: Circular saw: Samuel Miller
- 1779: Spinning mule: Samuel Crompton
- 1780: The Mysorean rockets, the first iron-cased rockets and the first missiles, are deployed by the Mysore Sultanate's Hyder Ali and Tipu Sultan against the British at the Battle of Pollilur in South India. They later inspired the Congreve rockets.[447]
- 1780s: Iron-cased rocket: Tipu Sultan in India[448]
- 1780s: Metal-cylinder rocket artillery: Hyder Ali and Tipu Sultan in India[449]
- 1780s: Iron rocket artillery: Tipu Sultan of India[448]
- 1783: Hot air balloon: Montgolfier brothers
- 1784: Bifocals: Benjamin Franklin
- 1784: Oil lamp: Aimé Argand[18]
- 1784: Shrapnel shell: Henry Shrapnel
- 1785: Power loom: Edmund Cartwright
- 1785: Automatic flour mill: Oliver Evans
- 1786: Threshing machine: Andrew Meikle
- 1791: Artificial teeth: Nicholas Dubois De Chemant
- 1795: Appertization: Nicolas Appert
- 1798: Vaccination: Edward Jenner
- 1798: Lithography: Alois Senefelder
- Indian clubs in India[450]
19th century[]
1800s[]
- 1804: Locomotive: Richard Trevithick
- 1809: Arc lamp: Humphry Davy
1810s[]
- 1817: Kaleidoscope: David Brewster
- 1818: Bicycle: Karl Drais[18]
1820s[]
- 1821: Electric motor: Michael Faraday
- 1826: Photography: Joseph Nicéphore Niépce
- 1826: Internal combustion engine: Samuel Morey
- 1827: Friction match: John Walker
- 1829: Steam locomotive: George Stephenson[18]
1830s[]
- 1830: Thermostat: Andrew Ure[18]
- 1831: Electrical generator: Michael Faraday, Ányos Jedlik
- 1837: Standard diving dress: Augustus Siebe[451]
- 1838: closed diving suit with a helmet: Augustus Siebe[451]
1840s[]
- 1840s: Vertical rotisserie in the Ottoman Empire[452][453][454]
- 1843: Typewriter: Charles Thurber
- 1843: Ice cream maker: Nancy Johnson
1850s[]
1860s[]
- 1860: Light Bulb: Sir Joseph Swan
- 1862: Mechanical submarine: Narcís Monturiol i Estarriol
- 1866: Dynamite: Alfred Nobel
1870s[]
- 1870: Chewing gum: Thomas Adams[18]
- 1870: Stock ticker: Thomas Alva Edison
- 1873: Jeans: Levi Strauss[18]
- 1874: Barbed wire: Joseph Glidden[18]
- 1874: DDT: Othmar Zeidler[18]
- 1877: Induction motor: Nikola Tesla
- 1877: Phonograph: Thomas Alva Edison
- 1878: Rebreather: Henry Fleuss[457]
1880s[]
- 1883: Two-phase (alternating current) induction motor: Nikola Tesla
- 1885: Machine gun: Hiram Stevens Maxim[458]
- 1888: Polyphase AC Electric power system: Nikola Tesla (30 related patents.)
- Takadiastase: Jokichi Takamine in Japan
1890s[]
- 1891: Escalator: Jesse W. Reno[18]
- 1891: Landing gear: Chūhachi Ninomiya in Japan
- 1891: Pusher propeller: Chūhachi Ninomiya in Japan
- 1891: Stabilizer: Chūhachi Ninomiya in Japan
- 1891: Tesla coil: Nikola Tesla
- 1893: Biplane: Chūhachi Ninomiya[459] in Japan
- 1893: Tailless aircraft: Chūhachi Ninomiya[459] in Japan
- 1893: Tuned wireless communication: Nikola Tesla (The True Wireless)
- 1893: Radio: Nikola Tesla [460]
- 1894: Radio transmission: Jagdish Chandra Bose in Bengal[461]
- 1894: Radiotelegraph: Jagdish Chandra Bose in Bengal
- 1894: Methamphetamine: Nagayoshi Nagai[462] in Japan
- 1896: Long-distance wireless transmission: Jagdish Chandra Bose in Bengal
- 1898: Remote control: Nikola Tesla
- 1898: Ignition coil: Nikola Tesla
- 1899: Iron-mercury coherer: Jagdish Chandra Bose in Bengal
20th century[]
1900s[]
- 1900: Epinephrine (adrenaline): Jokichi Takamine & Keizo Uenaka in Japan
- 1900: Self-heating can
- 1901: Mercury vapor lamp: Peter C. Hewitt
- 1902: Air Conditioner: Willis Carrier [18]
- 1903: Powered, controlled airplane: Wilbur Wright and Orville Wright (Wright brothers)
- 1907: Monosodium glutamate: Kikunae Ikeda[463] in Japan
- 1908: Cellophane: Jacques E. Brandenberger
- 1908: Haber process: Fritz Haber
- 1908: Umami: Kikunae Ikeda[464] in Japan
- Microwave optics: Jagdish Chandra Bose in Bengal
- Crescograph: Jagdish Chandra Bose in Bengal[465]
1910s[]
- 1910: Aberic acid: Umetaro Suzuki in Japan
- 1910: Thiamine (Vitamin B1): Umetaro Suzuki[466] in Japan
- 1910: Vitamin (B vitamin): Umetaro Suzuki in Japan
- 1913: Bra: Mary Phelps Jacob
- 1914: Tank, military: Sir William Ashbee Tritton and Major Walter Gordon Wilson[467]
- 1916: Cultured pearl: Mikimoto Kōkichi in Japan
- 1919: Theremin: Leon Theremin
1920s[]
- 1920: Saha ionization equation: Meghnad Saha[468] in Bengal
- 1923: Autogyro: Juan de la Cierva
- 1924: Automatic power loom: Sakichi Toyoda[469] in Japan
- 1924: Autonomation: Sakichi Toyoda[469] in Japan
- 1924: Autonomous automation: Sakichi Toyoda[469] in Japan
- 1925: Ultra-centrifuge: Theodor Svedberg - used to determine molecular weights
- 1926: Yagi antenna: Hidetsugu Yagi & Shintaro Uda in Japan
- 1926: Directional antenna: Hidetsugu Yagi & Shintaro Uda in Japan
- 1926: High-gain antenna: Hidetsugu Yagi & Shintaro Uda in Japan
- 1926: Kenjiro Takayanagi invents the first electronic television.[470]
- 1927: Mechanical cotton picker: John Rust
- 1928: Sliced bread: Otto Frederick Rohwedder
- 1928: Antibiotics: Alexander Fleming (Penicillin)
- 1928: Raman effect: Sir Chandrasekhara Venkata Raman[471] in India
- 1928: Magnetic interference balance: Shanti Swarup Bhatnagar & K. N. Mathur[472] in India
- 1928: KS steel by Kotaro Honda[473]
- Phototelegraphic transmission: Yasujiro Niwa in Japan
- Mechanical television: Yasujiro Niwa in Japan
1930s[]
- 1931: Magnetic-resistant steel: Kotaro Honda in Japan
- 1931: Magnetic steel: Kotaro Honda in Japan
- 1931: Alnico: Tokuhichi Mishima in Japan
- 1931: MKM steel: Tokuhichi Mishima in Japan[474][475]
- 1934: Switching circuit theory is introduced by Akira Nakashima,[476][477][478][479] laying the foundations for digital circuit design, in digital computers and other areas of modern technology.[479]
- 1937: Nylon: Wallace H. Carothers[18]
- 1937: Portable electrocardiograph: Taro Takemi in Japan
- 1938: Ballpoint pen: László Bíró
- 1939: Helicopter: Igor Sikorsky
- 1939: Automated teller machine (ATM): Luther George Simjian
- 1939: Vectorcardiography: Taro Takemi in Japan
- Nuclear medicine: Taro Takemi, Irene Joliot-Curie, Frederic Joliot-Curie
1940s[]
- 1941: Velcro: George de Mestral
- 1942: The earliest electroacoustic tape music recording by Halim El-Dabh in Cairo, Egypt.[480]
- 1942: Nuclear reactor: Enrico Fermi[18] and Robert Oppenheimer
- 1942: Undersea oil pipeline: Hartley, Anglo-Iranian, Siemens in Operation Pluto
- 1944: Fire balloon in Japan
- 1945: Nuclear weapon: Manhattan Project
- 1946: Bikini: Louis Réard[18]
- 1947: Transistor: William Shockley, Walter Brattain, John Bardeen
- 1947: Polaroid camera: Edwin Land
- 1948: Long Playing Record: Peter Carl Goldmark
- 1948: Holography: Dennis Gabor[18]
- 1949: Atomic clocks
- 1949: Kei car in Japan
- Electric rice cooker: Mitsubishi Electric in Japan
1950s[]
- 1950: Steadicam tracking shot: Akira Kurosawa in Japan
- 1950: The PIN photodiode is invented by Jun-ichi Nishizawa.[481]
- 1950: The static induction transistor, a type of JFET, is invented by Jun-ichi Nishizawa and Y. Watanabe.[482]
- 1951: Combined oral contraceptive pill: Djerassi, Miramontes and Rosenkranz [483] in United States
- 1951: Liquid Paper: Bette Nesmith Graham in United States
- 1952: Floppy disk: Yoshiro Nakamatsu[484] in Japan
- 1952: Optical fiber: Narinder Singh Kapany[485][486] in India and United Kingdom
- 1952: The avalanche photodiode is invented by Jun-ichi Nishizawa.[487]
- 1952: Fusion bomb: Edward Teller and Stanislaw Ulam in United States
- 1953: Medical ultrasonography
- 1953: The optical fiber is invented by Narinder Singh Kapany and Harold Hopkins.[488][489][490]
- 1955: Video phone: Gregorio Y. Zara in the Philippines
- 1955: Bounce lighting: Subrata Mitra[491][492] in Bengal
- 1956: Digital clock
- 1957: Electric compact calculator: Casio in Japan
- 1957: Satellite: Kerim Kerimov (Sputnik 1) in Turkestan
- 1957: The first artificial satellite, Sputnik 1, is built and launched by the Soviet Union. Its lead architects were Sergei Korolev and Kerim Kerimov.[493][494]
- 1957: The semiconductor laser is invented by Jun-ichi Nishizawa.[487][495]
- 1958: Implantable pacemaker: Rune Elmqvist in Sweden
- Dedicated high-speed rail lines in Japan
- High-speed narrow gauge railway: Shinkansen in Japan
- 1959: Bullet train: Kawasaki Heavy Industries in Japan
- 1959: The gas laser is invented by Ali Javan.[496]
1960s[]
- 1960: Laser: Theodore Harold Maiman in North America
- 1960: Solid-state electronic calculator: Sony in Japan
- 1961: Human spaceflight: Yuri Gagarin, Sergey Korolyov and Kerim Kerimov[493] in Turkestan
- 1961: The first human spaceflight, Yuri Gagarin's 108-minute trip around the globe aboard the Vostok 1, is conducted by the Soviet Union's Sergei Korolev and Kerim Kerimov.[493][494]
- 1963: Tube structure: Fazlur Rahman Khan in United States
- 1963: Frame tube structure: Fazlur Rahman Khan in United States
- 1963: The tube structural system is invented by Fazlur Rahman Khan.[497]
- 1963: Fiber-optic communication is invented by Jun-ichi Nishizawa.[498]
- 1965: Trussed tube structure: Fazlur Rahman Khan in United States
- 1965: Tactile paving invented by Seiichi Miyake.[499]
- 1966: The first automated teller machine (ATM), the Computer Loan Machine developed in Japan, is released.[500][501]
- Late 1960s: The first digital fax machine, the Dacom Rapidfax, is released.[502][503]
- 1967: The first fully automated space docking, of Cosmos 186 and Cosmos 188, is conducted by the Soviet Union and led by Kerim Kerimov.[493][494]
- 1967: The first PCM (pulse-code modulation) digital audio recorder is developed by NHK's research facilities.[504]
- 1967: Space dock: Kerim Kerimov[493][494] in Turkestan
- 1967: Automatic Teller Machine: John Shepherd-Barron in United Kingdom
- 1967: Bullet Time: Tatsunoko Production in Japan
- 1967: Hypertext: Project Xanadu in United States
- 1967: Quartz wristwatch: Seiko[505] in Japan
- 1968: The first phaser effects pedal, the Uni-Vibe, is invented by Fumio Mieda of Shin-ei.[506]
- 1968: The aperture grille CRT display techology is introduced by Sony with their Trinitron television.[507]
- 1968: The first text-to-speech synthesis system is developed by Noriko Umeda's team at the Electrotechnical Laboratory.[508]
- Aperture grille: Sony in Japan
- Packet switching: Paul Baran in United States
- Shearing interferometer: M. V. R. K. Murty in India[509]
- 1969: Video cassette: Sony in Japan
- 1969: Direct-drive turntable (Technics SP-10) invented by Shuichi Obata of Matsushita.[510] based in Osaka.[511][512]
1970s[]
- 1970: Pocket calculator: Sanyo, Canon, and Sharp, in Japan
- 1970: Cup noodles: Nissin Foods in Japan
- 1970: Bundled tube structure: Fazlur Rahman Khan (Sears Tower) in United States
- 1970: Panasonic releases the first handheld television, the Panasonic IC TV MODEL TR-001.[513]
- 1970s: The first widescreen HDTV format, MUSE format, is developed by NHK.[514] was a hybrid system with analog and digital features.[515]
- 1971: Arcade video game: Standford University (Galaxy Game) and Nolan Bushnell (Computer Space) in US
- 1971: Instant noodles: Momofuku Ando in Japan
- 1971: Space station: Kerim Kerimov[493][494] in Turkestan
- 1971: Karaoke: Daisuke Inoue in Japan
- 1971: Microprocessor: Masatoshi Shima (Busicom) and Federico Faggin (Intel)
- 1971: Magnetic resonance imaging: Raymond Vahan Damadian in United States
- 1971: Oil-eating bacteria: Ananda Mohan Chakrabarty in United States
- 1971: Genetically modified organism: Pseudomonas by Ananda Mohan Chakrabarty in United States
- 1971: Videocassette recorder: Sony in Japan
- 1971: The first commercial microprocessor, the Intel 4004, is released, and was invented by Masatoshi Shima, Marcian Hoff and Federico Faggin.[516][517]
- 1971: Karaoke invented by Daisuke Inoue.[518][519][520]
- 1971: The first space station, the Salyut 1, is launched by the Soviet Union, with its development led by Kerim Kerimov.[493][494]
- 1972: Mecha: Go Nagai in Japan
- 1972: Pulse-code modulation (PCM): Denon in Japan
- 1972: Video game console: Ralph Baer (Magnavox Odyssey) in United States
- 1972: Microcomputer: Sord SMP80/X in Japan
- 1972: The first microcomputer, the SMP80/08, is developed by Sord Computer Corporation.[521][522]
- 1973: Graphical user interface (GUI): Xerox Alto in United States
- 1973: Hybrid rice in China[523]
- 1973: The VHS (Video Home System) format is invented by Yuma Shiraishi and Shizuo Takano, who worked for JVC.[524]
- 1974: Microfinance: Muhammad Yunus in Bangladesh
- 1974: Microcredit and microloan: Muhammad Yunus in Bangladesh
- 1974: Hybrid vehicle: Victor Wouk [6] in United States
- 1974: Scrolling video game: Tomohiro Nishikado (Speed Race) in Japan
- 1975: Microprocessor video game machine: Gun Fight arcade game (Taito and Midway)
- 1976: Perpendicular recording: Shun-ichi Iwasaki at Tohoku University in Japan
- 1976: Polyphony: Yamaha in Japan
- 1976: ROM cartridge and microprocessor game console: Jerry Lawson (Fairchild Channel F) in United States
- 1976: The first digital audio optical disc (compact disc) is demonstrated by Sony.[525]
- 1977: Personal stereo: Andreas Pavel in Brazil
- 1978: Credit-card-sized calculator: Casio in Japan
- 1978: Solar-powered calculator: Sharp in Japan
- 1978: Video game arcade: Taito (Space Invaders) in Japan
- 1978: The Walkman is developed by Nobutoshi Kihara in 1978, and released by Sony in 1979.[526]
- Digital audio: Denon in Japan
- 1979: Walkman: Sony in Japan
1980s[]
- 1980: Compact Disc: Sony[18] in Japan
- 1980: Flash memory: Fujio Masuoka[527][528] in Japan
- 1980: The Roland TR-808, the first fully programmable drum machine, is introduced by Roland Corporation.[529]
- 1980: The first laptop is invented by Suwa Seikosha employee Yukio Yokozawa in 1980,[530] and is released by Seiko as the HC-20 in 1981.[531]
- 1980-1982: The first LCD televisions were developed by Hattori Seiko's R&D group from 1980.[532] In 1982, Seiko Epson released the first LCD television, the Epson TV Watch.[533][534]
- 1980-1985: The lithium-iron battery was developed from the research of Rachid Yazami and John B. Goodenough in 1980, and further developed by Tokio Yamabe and Shizukuni Yata in 1981,[535] and found that it was very effective for the anode in the conventional liquid electrolyte.[536] [537] which led to Akira Yoshino of Asahi Chemical building the first lithium-ion battery in 1985.[538]
- 1981: 3D printing is invented by Hideo Kodama of Nagoya Municipal Industrial Research Institute.[539][540]
- 1981: Handheld electronic camera: Sony in Japan
- 1981: Video Floppy: Sony in Japan
- 1982: Compact Disc player: Sony[541] in Japan
- 1982: CD-ROM: An acronym of "Compact Disc Read-only memory", it is a pre-pressed compact disc that contains data accessible to, but not writable by, a computer for data storage and music playback. The 1985 Yellow Book standard developed by Sony adapted the format to hold any form of binary data.[542]
- 1982: Camcorder: Sony in Japan
- 1982: D-pad: Gunpei Yokoi in Japan
- 1982: Pocket television: Sony in Japan
- 1982: Flat panel display: Sony in Japan
- 1982: Parallax scrolling: Irem[543] in Japan
- 1982: The first CD player (Sony CDP-101) is released by Sony.[544]
- 1982: The neodymium magnet is invented independently by [General Motors]] (GM) and Sumitomo Special Metals.[545]
- 1982: A CD-ROM contains data accessible to, but not writable by, a computer for data storage and music playback. It is first demonstrated by Denon in 1982.[546] The Yellow Book standard is later developed by Sony and Philips in 1985.[542]
- 1983: Personal digital assistant: Casio in Japan
- 1983: Internet and TCP/IP network: Robert E. Kahn in United States
- 1984: Digital synthesizer: Yamaha in Japan
- 1984: Portable CD player: Sony in Japan
- 1984: Phase distortion synthesis: Casio in Japan
- 1984: Thin-film transistor (TFT): Shunpei Yamazaki in Japan
- 1985: Graphing calculator: Casio in Japan
- 1985: Lithium-ion battery invented by Akira Yoshino.[547]
- 1986: The first digital single-lens reflex camera, the Nikon SVC, revealed by Nikon.[548]
- 1986: The first PC virus (Brain) is created by Basit Farooq Alvi and Amjad Farooq Alvi.[549]
- 1986: Digital single-lens reflex camera: Nikon in Japan
- 1986: PC virus: Brain boot sector virus by Basit Farooq Alvi and Amjad Farooq Alvi in Pakistan
- 1987: Electronically-controlled continuously variable transmission: Subaru in Japan
- 1988: Digital camera: Fuji in Japan
- 1988: Liquid crystal display television: Sharp Corporation in Japan
- Digital Audio Tape: Sony in Japan
- PCM adaptor: Sony in Japan
- Vowel-Consonant synthesis: Casio in Japan
- 1989: Continuously variable transmission car: Subaru in Japan
- 1989: Blue laser: Isamu Akasaki in Japan
- 1989: Gallium nitride: Isamu Akasaki[550] in Japan
- 1989: p–n junction: Isamu Akasaki[550] in Japan
- 1989: Digital waveguide synthesis: Yamaha in Japan
- 1989: The first color LCD video projector, Epson's VPJ-700, based on their 3LCD technology, is released.[534]
- 1989: The first color plasma display, produced by Fujitsu, is released.[551]
1990s[]
- 1990: Handheld colour television: Sony in Japan
- 1990: Handheld liquid crystal display television: Sony in Japan
- 1990: World Wide Web: Tim Berners-Lee[18][552] in United Kingdom
- 1991: Lithium battery: Sony in Japan
- 1991: Memory card: Japan Electronic Industries Development Association
- 1992: Plasma colour display: Fujitsu in Japan
- 1992: Blue laser by Shuji Nakamura[553]
- 1993: Mosaic, the first popular web browser is introduced
- 1993: Mosaic, the first popular web browser is introduced
- 1993: Global Positioning System (GPS): United States Department of Defense
- 1993: Blue LED: Shuji Nakamura in Japan
- 1994: Physical modelling synthesis: Yamaha in Japan
- 1994: Wiki: Ward Cunningham[554] in United States
- 1994: QR code by Denso Wave[555]
- 1994: Stanford Federal Credit Union becomes the first financial institution to offer online internet banking services to all of its members in October 1994.[556]
- 1994: Stanford Federal Credit Union becomes the first financial institution to offer online internet banking services to all of its members in October 1994.[557]
- 1995: DVD is an optical disc storage format, invented and developed by Panasonic, Philips, Sony and Toshiba in 1995. DVDs offer higher storage capacity than Compact Discs while having the same dimensions.
- 1995: DVD is an optical disc storage format, invented and developed by Philips, Sony, Toshiba, and Panasonic in 1995. DVDs offer higher storage capacity than Compact Discs while having the same dimensions.
- 1995: The first web-based commercial online auction (eBay) is founded by Pierre Omidyar.[558]
- 1995: DVD: An optical disc storage format, invented and developed by Japanese companies Sony, Toshiba and Panasonic in 1995. DVD's offer higher storage capacity than Compact Discs while having the same dimensions.
- 1995: Web-based online auction: Pierre Omidyar (eBay) in United States
- 1995: Web browser based webmail: Hotmail (Sabeer Bhatia and Jack Smith) in United States
- 1996: Analog stick: Nintendo in Japan
- 1996: Force feedback: Nintendo in Japan
- 1997: Non-mechanical digital audio player: SaeHan Information Systems[559] in South Korea
- 1997: Plasma television: Pioneer Corporation in Japan
- 1998: Arcade-quality GPU: VideoLogic (Hossein Yassaie) and NEC
- 1998: Hidden surface removal: VideoLogic (Hossein Yassaie) and NEC
- Analog modeling synthesizer: Korg in Japan
- Indium gallium nitride: Shuji Nakamura in Japan
- 1999: Camera phone (VP-210) by Kyocera[560]
3rd millennium[]
21st century[]
2000s[]
- Further information: 2000s in science and technology and List of emerging technologies
- 2000: Cel-shaded animation: Sega and Kronos
- 2000: Real-time online anti-fraud system: Jawed Karim (PayPal)[18] in United States
- 2001: Photorealistic CGI animation: Square Pictures (Final Fantasy: The Spirits Within) in Japan and Hawaii
- 2001: Self-contained artificial heart
- 2001: Mobile GPU (graphics processing unit): Hossein Yassaie (PowerVR MBX) in United Kingdom
- 2001: Multi-touch device: Mitsubishi (DiamondTouch) in Japan
- 2001: PageRank: Sergey Brin and Larry Page in United States
- 2005: Reflective LCD panel: Shunpei Yamazaki[561] in Japan
- 2005: Video hosting service with web browser-embedded video player: Jawed Karim, Steve Chen, Chad Hurley
- 2006: Glass integrated circuit: Shunpei Yamazaki[561] in Japan
- 2006: Plastic CPU (central processing unit): Shunpei Yamazaki[561] in Japan
- 2006: Heat-assisted magnetic recording: Fujitsu in Japan
- 2006: E-learning micro-lecture: Salman Khan (Khan Academy) in United States
- 2007: Multi-touch smartphone: Steve Jobs (Apple) in United States
- 2007: Photorealistic real-time 3D graphics: Crytek (Cevat Yerli , Faruk Yerli, Avni Yerli) in Germany
2010s[]
- 2010: Infrared laser cane walking stick: Asil Abu Lil in Palestine [7]
- 2010: Tablet phone: Samsung Galaxy Tab by Omar Khan at Samsung [8]
- 2012: Plastic biofuel: Azza Abdel Hamid Faiad in Egypt [9]
- 2012: Quantum spacecraft propulsion: Aisha Mustafa in Egypt [10]
- 2013: Banana bioplastic: Elif Bilgin in Turkey [11]
- 2013: Electric double-layer supercapacitor: Eesha Khare [12] in United States
- 2013: Rapid battery charger: Eesha Khare [13] in United States
- 2013: Human-powered flashlight: Ann Makosinski [14] in Canada
Notes[]
- ↑ Harvard Gazette, Invention of cooking drove evolution of the human species
- ↑ Harvard Gazette, Invention of cooking drove evolution of the human species
- ↑ Hadfield, Peter, Gimme Shelter
- ↑ Earliest evidence of art found
- ↑ Evolving in their graves: early burials hold clues to human origins
- ↑ Bruton, Eric (1979). The History of Clocks and Watches. New York: Crescent Books. ISBN 0-517-37744-6.
- ↑ Scott Elias (12 September 2012). Origins of Human Innovation and Creativity. Elsevier, 28. ISBN 978-0-444-53821-5.
- ↑ News in Science - Shell beads suggest new roots for culture - 23/06/2006. Retrieved on 23 October 2017.
- ↑ Wadley L, Sievers C, Bamford M, Goldberg P, Berna F, Miller C. (2011). Middle Stone Age Bedding Construction and Settlement Patterns at Sibudu, South Africa. Science 9 December 2011: Vol. 334 no. 6061 pp. 1388-1391
- ↑ 10.0 10.1 Backwell L, d'Errico F, Wadley L.(2008). Middle Stone Age bone tools from the Howiesons Poort layers, Sibudu Cave, South Africa. Journal of Archaeological Science, 35:1566-1580. doi:10.1016/j.jas.2007.11.006
- ↑ Jennifer Viegas (31 March 2008). "Early Weapon Evidence Reveals Bloody Past". Discovery News. http://dsc.discovery.com/news/2008/03/31/earliest-weapon-human.html.
- ↑ Pegg, Jr., Ed, Lebombo Bone
- ↑ (2009) "Clothes Make the (Hu) Man". Science 325 (5946). doi:10.1126/science.325_1329a. PMID 19745126.
- ↑ (2009) "30,000-Year-Old Wild Flax Fibers". Science 325 (5946). doi:10.1126/science.1175404. PMID 19745144.
- ↑ Small, Meredith F. (April 2002). "String theory: the tradition of spinning raw fibers dates back 28,000 years. (At The Museum)". Natural History 111.3.
- ↑ Keddie, Grant, The Atlatl Weapon[dead link]
- ↑ "Chinese pottery may be earliest discovered." Associated Press. 2009-06-01
- ↑ 18.00 18.01 18.02 18.03 18.04 18.05 18.06 18.07 18.08 18.09 18.10 18.11 18.12 18.13 18.14 18.15 18.16 18.17 18.18 18.19 18.20 Encyclopædia Britannica's Great Inventions, Encyclopædia Britannica
- ↑ Stone age man used dentist drill. BBC News.
- ↑ 20.0 20.1 (15 April 2010) Dictionary of the Ancient Near East. University of Pennsylvania Press, 233. ISBN 978-0-8122-2115-2.
- ↑ 21.0 21.1 D. T. Potts (2012). A Companion to the Archaeology of the Ancient Near East, 285.
- ↑ Loewe (1968), 170–171.
- ↑ 23.0 23.1 Deng, Gang. (1997). Chinese Maritime Activities and Socioeconomic Development, c. 2100 B.C.-1900 A.D. Westport: Greenwood Press. ISBN 0-313-29212-4, p. 22.
- ↑ Miriam T. Stark (15 April 2008). Archaeology of Asia. John Wiley & Sons, 130. ISBN 978-1-4051-5303-4. Retrieved on 5 October 2012.
- ↑ Carter, Robert "Boat remains and maritime trade in the Persian Gulf during the sixth and fifth millennia BC"Antiquity Volume 80 No.307 March 2006 [1]
- ↑ Kulke, Hermann & Rothermund, Dietmar (2004). A History of India. Routledge. 22. ISBN 0415329205.
- ↑ Jane McIntosh (2008), The Ancient Indus Valley, p.333
- ↑ (2002) "First Evidence of Cotton at Neolithic Mehrgarh, Pakistan: Analysis of Mineralized Fibres from a Copper Bead". Journal of Archaeological Science 29 (12): 1393–1401. doi:10.1006/jasc.2001.0779.
- ↑ Dashing Finns were first to get their skates on 5,000 years ago. The Times. Retrieved on 2007-12-24.
- ↑ (1989) "The Question of Meteoritic versus Smelted Nickel-Rich Iron: Archaeological Evidence and Experimental Results". World Archaeology 20 (3): 403–421. doi:10.1080/00438243.1989.9980081.
- ↑ (December 2006) "Bronocice, Flintbek, Uruk, JEbel Aruda and Arslantepe: The Earliest Evidence Of Wheeled Vehicles In Europe And The Near East". Palaeohistoria 47/48: 10-28 (11). University of Groningen.
- ↑ M J Brownstein (June 15, 1993). "A brief history of opiates, opioid peptides, and opioid receptors". Proceedings of the National Academy of Sciences of the United States of America 90 (12): 5391–5393. doi:10.1073/pnas.90.12.5391. PMID 8390660.
- ↑ PBS Frontline (1997). The Opium Kings. Retrieved on May 16, 2007.
- ↑ (2010) Agriculture Diversification: Problems and Perspectives. I. K. International Pvt Ltd, 140.
- ↑ 35.0 35.1 John Coleman Darnell (2006). The Wadi of the Horus Qa-a: A Tableau of Royal Ritual Power in the Theban Western Desert. Yale. Archived from the original on 2011-02-01. Retrieved on 2010-08-24.
- ↑ 36.0 36.1 The sea-craft of prehistory, p76, by Paul Johnstone, Routledge, 1980
- ↑ Rodda & Ubertini (2004), The Basis of Civilization--water Science?, p. 161, International Association of Hydrological Science, ISBN 1901502570
- ↑ Harriet Crawford, Sumer and the Sumerians, Cambridge University Press, (New York 1993), ISBN 0-521-38850-3, page 73
- ↑ "Tchogha Zanbil". UNESCO World Heritage Centre. http://whc.unesco.org/en/list/113. "It is the largest ziggurat outside of Mesopotamia and the best preserved of this type of stepped pyramidal monument."
- ↑ 40.0 40.1 40.2 40.3 40.4 Teresi, Dick; et al. (2002), Lost Discoveries: The Ancient Roots of Modern Science--from the Babylonians to the Maya, pp. 351-2, New York: Simon & Schuster, ISBN 0-684-83718-8
- ↑ Ifrah, Georges (2001). The Universal History of Computing: From the Abacus to the Quantum Computer. New York, NY: John Wiley & Sons, Inc., 11. ISBN 978-0-471-39671-0.
- ↑ Ghosh (1990), page 83
- ↑ Davreu (1978), pages 121-129
- ↑ Pruthi (2004), pages 225-270
- ↑ Rodda, J. C. and Ubertini, Lucio (2004). The Basis of Civilization - Water Science? pg 161. International Association of Hydrological Sciences (International Association of Hydrological Sciences Press 2004).
- ↑ Livingston & Beach, 20
- ↑ Kryss Katsiavriades and Talaat Qureshi, Inventions - 3000 BCE to 2000 BCE.
- ↑ Lal, R. (August 2001), "Thematic evolution of ISTRO: transition in scientific issues and research focus from 1955 to 2000", Soil and Tillage Research 61 (1-2): 3-12 [3]
- ↑ Ghosh, Massey, and Banerjee, page 14
- ↑ 50.0 50.1 Dales (1974)
- ↑ Rao, S. R. (1985), Lothal, pp. 27–8, Archaeological Survey of India
- ↑ Whitelaw, page 14
- ↑ Sherman, David M. (2002). Tending Animals in the Global Village. Blackwell Publishing. 46. ISBN 0683180517.
- ↑ "Games and Amusement: Dice". Encyclopedia of Indian Archaeology edited by A. Ghosh (1990), 1: 178-179, Brill Academic Publishers, ISBN 9004092641
- ↑ Bhardwaj, H.C. & Jain, K.K., "Indian Dyes and Industry During 18th-19th Century", Indian Journal of History of Science, 17 (11): 70-81, New Delhi: Indian National Science Academy.
- ↑ Keay, John (2001), India: A History, 13-14, Grove Press, ISBN 0802137970.
- ↑ Great Bath, Mohenjo-daro
- ↑ Rodda, J.C. and Ubertini, Lucio (2004). The Basis of Civilization – Water Science? p. 161. International Association of Hydrological Sciences (International Association of Hydrological Sciences Press 2004).
- ↑ Ifrah, Georges (2001). The Universal History of Computing. John Wiley & Sons, Inc., 11. ISBN 978-0-471-39671-0.
- ↑ David S. Anthony, The Horse, The Wheel and Language: How bronze age riders from the Eurasian steppes shaped the modern world (2007), pp. 397-405.
- ↑ Stephen Chrisomalis (2010). Numerical Notation: A Comparative History, 247.
- ↑ Thrusfield, page 2
- ↑ Akanuma, H. (2005). "The significance of the composition of excavated iron fragments taken from Stratum III at the site of Kaman-Kalehöyük, Turkey". Anatolian Archaeological Studies 14: 147–158. Japanese Institute of Anatolian Archaeology.
- ↑ "Ironware piece unearthed from Turkey found to be oldest steel". The Hindu (Chennai, India). 2009-03-26. https://web.archive.org/web/20090329111924/http://www.hindu.com/thehindu/holnus/001200903261611.htm. Retrieved on 27 March 2009.
- ↑ World's Greatest Inventions. Retrieved on 26 March 2018.
- ↑ Berlev, Oleg (1997). "Bureaucrats", in Donadoni, Sergio: The Egyptians, Trans. Bianchi, Robert et al., Chicago, IL: The University of Chicago Press, 18. ISBN 0-226-15555-2. OCLC 35808323.
- ↑ One of world's oldest sundials dug up in Kings' Valley, Upper Egypt
- ↑ History Channel, Where Did It Come From? Episode: "Ancient China: Agriculture"
- ↑ http://www.michaelppowers.com/prosperity/coins.htm.
- ↑ Alter, page 88
- ↑ Craddock, P. T. et al. (1983), "Zinc production in medieval India", World Archaeology 15 (2), Industrial Archaeology, p. 13
- ↑ 72.0 72.1 History of Ondol
- ↑ Koppel (2007), page 217
- ↑ A World of Glass
- ↑ Needham (1986), volume 6 part 5 105-106
- ↑ 76.0 76.1 Zaheer Baber (1996), The Science of Empire: Scientific Knowledge, Civilization, and Colonial Rule in India, p. 23, State University of New York Press, ISBN 0791429199
- ↑ "Review of Ancient Wisdom of Qanat, and Suggestions for Future Water Management" (PDF). www.e-sciencecentral.org. p. 57.
- ↑ "APPLICATION OF TRADITIONAL ARCHITECTURAL STRUCTURE AS SUSTAINABLE APPROACH TO MITIGATION OF SHORTAGE WATER SUPPLY IN DESERT REGIONS" (PDF). universitypublications.net. p. 125.
- ↑ 79.0 79.1 79.2 79.3 Surgical Instruments from Ancient Rome
- ↑ Roman period surgery set on show, BBC
- ↑ 81.0 81.1 Lynn Townsend White, Jr. (April 1960). "Tibet, India, and Malaya as Sources of Western Medieval Technology", The American Historical Review 65 (3), p. 521.
- ↑ Kriger, Colleen E. & Connah, Graham (2006), Cloth in West African History, p. 120, Rowman Altamira, ISBN 0759104220
- ↑ Encyclopedia Britannica (2008), "jute"
- ↑ 84.0 84.1 84.2 84.3 [2]
- ↑ Rolph, George (1873). Something about sugar: its history, growth, manufacture and distribution. San Francisco: J.J. Newbegin.
- ↑ Stephanie Dalley, The Mystery of the Hanging Garden of Babylon: an elusive World Wonder traced, (2013), OUP ISBN 978-0-19-966226-5
- ↑ (2003) "Sennacherib, Archimedes, and the Water Screw: The Context of Invention in the Ancient World". Technology and Culture 44 (1): 1–26. doi:10.1353/tech.2003.0011.
- ↑ Joseph Needham, Science and Civilisation in China 4(2) (1965), p. 352.
- ↑ Joseph Needham, Science and Civilisation in China 4(2) (1965), p. 352.
- ↑ 90.0 90.1 Everwondered? (31 May 2008). World's Greatest Inventions: Inventions: 1st millennium BC (1000 BC to 1 BC). Retrieved on 26 March 2018.
- ↑ Finger (2001), page 66
- ↑ Srinivasan, Sharada (15 November 1994). "Wootz crucible steel: a newly discovered production site in South India". Papers from the Institute of Archaeology 5: 49–59. doi:10.5334/pia.60.
- ↑ Coghlan, Herbert Henery (1977). Notes on prehistoric and early iron in the Old World, 2nd, Pitt Rivers Museum, 99–100.
- ↑ Sasisekharan, B. (1999). "Technology of Iron and Steel in Kodumanal". Indian Journal of History of Science 34.
- ↑ Wagner (1993), 153, 157–158.
- ↑ Chamberlin (2007), page 80
- ↑ Lynn Townsend White, Jr. (April 1960). "Tibet, India, and Malaya as Sources of Western Medieval Technology", The American Historical Review 65 (3), p. 516.
- ↑ 98.0 98.1 Pigott, Vincent C. (1999). The Archaeometallurgy of the Asian Old World. Philadelphia: University of Pennsylvania Museum of Archaeology and Anthropology. ISBN 0-924171-34-0, p. 191.
- ↑ Needham (1986), Volume 4, Part 2, 319–323.
- ↑ Encyclopedia Britannica (2008), "Linguistics"
- ↑ 101.0 101.1 Wagner (2001), 7, 36–37, 64–68.
- ↑ Ebrey, Walthall, and Palais (2006), 30.
- ↑ Gernet (1996), 69.
- ↑ Wagner (1993), 335.
- ↑ Pigott (1999), 177.
- ↑ 106.0 106.1 (2013) Encyclopaedia of the History of Science, Technology, and Medicine in Non-Westen Cultures. Springer Science & Business Media, 282. ISBN 9789401714167.
- ↑ Örjan Wikander (2008). in John Peter Oleson: The Oxford Handbook of Engineering and Technology in the Classical World. Oxford University Press, 141–2. ISBN 978-0-19-518731-1.
- ↑ Stavros I. Yannopoulos, Gerasimos Lyberatos, Nicolaos Theodossiou, Wang Li, Mohammad Valipour, Aldo Tamburrino, Andreas N. Angelakis (2015). "Evolution of Water Lifting Devices (Pumps) over the Centuries Worldwide". Water 7 (9): 5031–5060. MDPI. doi:10.3390/w7095031.
- ↑ 109.0 109.1 109.2 Joseph Needham (1986). Science and Civilization in China: Volume 4, Part 2, p. 361. Taipei: Caves Books, Ltd.
- ↑ 110.0 110.1 Adriana de Miranda (2007). Water architecture in the lands of Syria: the water-wheels. L'Erma di Bretschneider, 38–9. ISBN 88-8265-433-8.
- ↑ Juleff 1996
- ↑ Srinivasan & Ranganathan
- ↑ Moore, Frank Gardner (1950): "Three Canal Projects, Roman and Byzantine", American Journal of Archaeology, Vol. 54, No. 2, pp. 97–111 (99–101)
- ↑ Froriep, Siegfried (1986): "Ein Wasserweg in Bithynien. Bemühungen der Römer, Byzantiner und Osmanen", Antike Welt, 2nd Special Edition, pp. 39–50 (46)
- ↑ Schörner, Hadwiga (2000): "Künstliche Schiffahrtskanäle in der Antike. Der sogenannte antike Suez-Kanal", Skyllis, Vol. 3, No. 1, pp. 28–43 (33–35, 39)
- ↑ http://www.nytimes.com/1996/02/06/science/ancient-smelter-used-wind-to-make-high-grade-steel.html John Noble Wilford, "Ancient Smelter Used Wind To Make High-Grade Steel", New York Times, 6 February 1996.
- ↑ Pigott (1999), 183–184.
- ↑ MSN Encarta (2007), Diamond
- ↑ 119.0 119.1 Lewis, Michael (2000), "Theoretical Hydraulics, Automata, and Water Clocks", in Wikander, Örjan, Handbook of Ancient Water Technology, Technology and Change in History, 2, Leiden, pp. 343–369 (356f.), ISBN 90-04-11123-9
- ↑ Encyclopedia Britannica (2008), "cashmere"
- ↑ 121.0 121.1 Encyclopedia Britannica (2008), "Pagoda"
- ↑ B. H. M. W. Bohingamuwa (2000): "The water regulation technology of ancient Sri Lankan reservoirs: The Bisokotuwa sluice", p164.
- ↑ Wilson, Andrew (2002): "Machines, Power and the Ancient Economy", The Journal of Roman Studies, Vol. 92, pp. 1–32 (16) Template:Jstor
- ↑ Oleson, John Peter (2000): "Water-Lifting", in: Wikander, Örjan: "Handbook of Ancient Water Technology", Technology and Change in History, Vol. 2, Brill, Leiden, ISBN 90-04-11123-9, pp. 217–302 (233)
- ↑ Needham (1986), Volume 4, Part 2, 263–267.
- ↑ Needham (1986), Volume 4, Part 2, 70–71.
- ↑ Needham (1986), Volume 4, Part 3, 649–650.
- ↑ "turbine." Encyclopædia Britannica. 2007. Encyclopædia Britannica Online. 18 July 2007 <http://www.britannica.com/eb/article-45691>.
- ↑ 129.0 129.1 Ronald Watkins. Unknown Seas, p. 15.
- ↑ Ancient Indian use of Kamal
- ↑ Lynn Townsend White, Jr. (April 1960). "Tibet, India, and Malaya as Sources of Western Medieval Technology", The American Historical Review 65 (3), p. 519.
- ↑ John M. Hobson (2004), The Eastern Origins of Western Civilisation, p. 141, Cambridge University Press, ISBN 0521547245.
- ↑ Hoepfner, Wolfram (1970), "Ein Kombinationsschloss aus dem Kerameikos", Archäologischer Anzeiger 85 (2): 210–213
- ↑ Paper - one of the most important inventions of the last two millennia
- ↑ Zaheer Baber (1996), The Science of Empire: Scientific Knowledge, Civilization, and Colonial Rule in India, p. 57, State University of New York Press, ISBN 0791429199
- ↑ Livingston, Morna & Beach, Milo (2002), Steps to Water: The Ancient Stepwells of India, p. 19, Princeton Architectural Press, ISBN 1568983247
- ↑ R. Balasubramaniam (2000), On the Corrosion Resistance of the Delhi Iron Pillar, Corrosion Science 42: 2103-29
- ↑ Lakwete, Angela (2003). Inventing the Cotton Gin: Machine and Myth in Antebellum America. The Johns Hopkins University Press. ISBN 9780801873942.
- ↑ Zaheer Baber (1996), The Science of Empire: Scientific Knowledge, Civilization, and Colonial Rule in India, pp. 56-7, State University of New York Press, ISBN 0791429199
- ↑ Encyclopedia Britannica (2002), "Chess: Ancient precursors and related games"
- ↑ 141.0 141.1 MSN Encarta (2008), Pachisi
- ↑ Schafer (1963), pages 160-161
- ↑ Bedini (1994), pages 69-80
- ↑ Murray, H. J. R. (1913). A History of Chess. Benjamin Press (originally published by Oxford University Press). ISBN 0-936317-01-9. OCLC 13472872.
- ↑ 145.00 145.01 145.02 145.03 145.04 145.05 145.06 145.07 145.08 145.09 145.10 145.11 145.12 145.13 Georges C. Anawati, "Arabic alchemy", p. 868, in (Rashed & Morelon 1996, pp. 853-902)
- ↑ 146.0 146.1 146.2 Robert Briffault (1938), The Making of Humanity, p. 195
- ↑ 147.0 147.1 George Rafael, A is for Arabs, Salon.com, January 8, 2002.
- ↑ Deborah Rowe, How Islam has kept us out of the 'Dark Ages', Science and Society, Channel 4, May 2004.
- ↑ O'Connor, J. J. and E. F. Robertson. 2000. Indian Numerals, MacTutor History of Mathematics Archive, School of Mathematics and Statistics, University of St. Andrews, Scotland.
- ↑ Sharif Kaf al-Ghazal, Journal of the International Society for the History of Islamic Medicine, 2004 (3), pp. 3-9 [8].
- ↑ 151.0 151.1 S. Hadzovic (1997). "Pharmacy and the great contribution of Arab-Islamic science to its development", Medicinski Arhiv 51 (1-2), p. 47-50.
- ↑ 152.00 152.01 152.02 152.03 152.04 152.05 152.06 152.07 152.08 152.09 152.10 152.11 Dr. Kasem Ajram (1992). Miracle of Islamic Science, Appendix B. Knowledge House Publishers. ISBN 0911119434.
- ↑ 153.0 153.1 Sir Glubb, John Bagot (1969), A Short History of the Arab Peoples, http://www.cyberistan.org/islamic/quote2.html#glubb, retrieved on 25 January 2008
- ↑ Ibrahim B. Syed PhD, "Islamic Medicine: 1000 years ahead of its times", Journal of the Islamic Medical Association, 2002 (2): 2-9 [7-8]
- ↑ The Beginning of the Paper Industry, Foundation for Science Technology and Civilisation
- ↑ Dick, Michael S. (1998). The Ancient Ayurvedic Writings. Retrieved May 19, 2005.
- ↑ Gaudiosi, Monica M. (April 1988), "The Influence of the Islamic Law of Waqf on the Development of the Trust in England: The Case of Merton College", University of Pennsylvania Law Review 136 (4): 1231-1261
- ↑ Hudson, A. (2003), Equity and Trusts (3rd ed.), London: Cavendish Publishing, ISBN 1-85941-729-9
- ↑ C. Wayne Smith, Joe Tom Cothren (1999), Cotton: Origin, History, Technology, and Production, p. viii, John Wiley and Sons. Technology & Industrial Arts, ISBN 0471180459
- ↑ 160.0 160.1 160.2 160.3 160.4 Ahmad Y Hassan, Alcohol and the Distillation of Wine in Arabic Sources.
- ↑ Distillation, Hutchinson Encyclopedia, 2007
- ↑ 162.0 162.1 162.2 162.3 Derewenda, Zygmunt S. (2007), "On wine, chirality and crystallography", Acta Crystallographica Section A: Foundations of Crystallography 64: 246–258 [247], doi:
- ↑ 163.00 163.01 163.02 163.03 163.04 163.05 163.06 163.07 163.08 163.09 163.10 Hassan, Ahmad Y. Technology Transfer in the Chemical Industries. Ahmad Y Hassan. Retrieved on 2008-05-26.
- ↑ Khairallah, Amin A. Outline of Arabic Contributions to Medicine, chapter 10. Beirut, 1946.
- ↑ 165.0 165.1 165.2 Paul Vallely, How Islamic Inventors Changed the World, The Independent, 11 Mar 2006.
- ↑ Olga Pikovskaya, Repaying the West's Debt to Islam, BusinessWeek, March 29, 2005.
- ↑ 167.0 167.1 167.2 167.3 167.4 167.5 167.6 Hassan, Ahmad Y. The Colouring of Gemstones, The Purifying and Making of Pearls And Other Useful Recipes. History of Science and Technology in Islam. Retrieved on 2008-03-29.
- ↑ Ahmad Y Hassan, Lustre Glass and Lazaward And Zaffer Cobalt Oxide In Islamic And Western Lustre Glass And Ceramics, History of Science and Technology in Islam.
- ↑ Mason, Robert B. (1995). "New Looks at Old Pots: Results of Recent Multidisciplinary Studies of Glazed Ceramics from the Islamic World". Muqarnas: Annual on Islamic Art and Architecture XII. Brill Academic Publishers. ISBN 9004103147.
- ↑ rabab (musical instrument) – Encyclopædia Britannica. Britannica.com. Retrieved on 2013-08-17.
- ↑ Pacey, Arnold (1991). Technology in World Civilization: A Thousand-year History. MIT Press, 80. ISBN 978-0-262-66072-3.
- ↑ (2004) India's Legendary Wootz Steel: An Advanced Material of the Ancient World. National Institute of Advanced Studies. OCLC 82439861.
- ↑ (2013) A History of Engineering in Classical and Medieval Times. Routledge, 163-166. ISBN 9781317761570.
- ↑ ʿūd | musical instrument. Retrieved on 6 April 2019.
- ↑ (7 July 2012) "Medical Care In Islamic Tradition During The Middle Ages". Medical Education 3 (7). doi:10.9754/journal.wmc.2012.003549.
- ↑ Lucas, Adam (2006), Wind, Water, Work: Ancient and Medieval Milling Technology, Brill Publishers, pp. 65 & 84, ISBN 90-04-14649-0
- ↑ (2007) Das islamische Rippengewölbe : Ursprung, Form, Verbreitung. Berlin: Gebr. Mann. ISBN 978-3-7861-2550-1.
- ↑ Meri, Josef W. (2005). Medieval Islamic Civilization: An Encyclopedia. Routledge, 106. ISBN 1135455961.
- ↑ Burns, Robert I. (1996), "Paper comes to the West, 800–1400", in Lindgren, Uta, Europäische Technik im Mittelalter. 800 bis 1400. Tradition und Innovation (4th ed.), Berlin: Gebr. Mann Verlag, pp. 413–422 (414), ISBN 3-7861-1748-9
- ↑ Al-Hassani, Woodcock and Saoud, "1001 Inventions, Muslim heritage in Our World", FSTC Publishing, 2006, reprinted 2007, pp.218–219.
- ↑ (2015) Islamic Finance and the New Financial System: An Ethical Approach to Preventing Future Financial Crises. John Wiley & Sons, 11. ISBN 9781118990698.
- ↑ Broemeling, Lyle D. (1 November 2011). "An Account of Early Statistical Inference in Arab Cryptology". The American Statistician 65 (4): 255–257. doi:10.1198/tas.2011.10191.
- ↑ (1996) The Codebreakers: The Comprehensive History of Secret Communication from Ancient Times to the Internet. Simon and Schuster. ISBN 9781439103555.
- ↑ 184.0 184.1 184.2 184.3 David A. King, "Islamic Astronomy", in Christopher Walker (1999), ed., Astronomy before the telescope, p. 167-168. British Museum Press. ISBN 0-7141-2733-7.
- ↑ David A. King (2002). "A Vetustissimus Arabic Text on the Quadrans Vetus", Journal for the History of Astronomy 33, p. 237-255 [238-239].
- ↑ Salma Khadra Jayyusi and Manuela Marin (1994), The Legacy of Muslim Spain, p. 117, Brill Publishers, ISBN 9004095993
- ↑ 187.0 187.1 187.2 Lebling Jr., Robert W. (July-August 2003), "Flight of the Blackbird", Saudi Aramco World: 24–33, http://www.saudiaramcoworld.com/issue/200407/flight.of.the.blackbird-.compilation..htm, retrieved on 28 June 2008
- ↑ 188.0 188.1 188.2 Otto Mayr (1970). The Origins of Feedback Control, MIT Press.
- ↑ 189.0 189.1 189.2 189.3 189.4 189.5 189.6 Ahmad Y Hassan, Transfer Of Islamic Technology To The West, Part II: Transmission Of Islamic Engineering, History of Science and Technology in Islam.
- ↑ 190.0 190.1 Teun Koetsier (2001). "On the prehistory of programmable machines: musical automata, looms, calculators", Mechanism and Machine theory 36, p. 590-591.
- ↑ 191.00 191.01 191.02 191.03 191.04 191.05 191.06 191.07 191.08 191.09 191.10 191.11 191.12 191.13 191.14 191.15 191.16 Donald Routledge Hill, "Mechanical Engineering in the Medieval Near East", Scientific American, May 1991, p. 64-69. (cf. Donald Routledge Hill, Mechanical Engineering)
- ↑ 192.0 192.1 Fowler, Charles B. (October 1967), "The Museum of Music: A History of Mechanical Instruments", Music Educators Journal 54 (2): 45–49, doi:
- ↑ Hassan, Ahmad Y. Alcohol and the Distillation of Wine in Arabic Sources. History of Science and Technology in Islam. Retrieved on 2008-03-29.
- ↑ 194.0 194.1 Lynn Townsend White, Jr. (Spring, 1961). "Eilmer of Malmesbury, an Eleventh Century Aviator: A Case Study of Technological Innovation, Its Context and Tradition", Technology and Culture 2 (2): 97-111 [100]
- ↑ Hassan, Ahmad Y. Assessment of Kitab al-Durra al-Maknuna. History of Science and Technology in Islam. Retrieved on 2008-03-29.
- ↑ 196.0 196.1 196.2 196.3 196.4 Lynn Townsend White, Jr. (Spring, 1961). "Eilmer of Malmesbury, an Eleventh Century Aviator: A Case Study of Technological Innovation, Its Context and Tradition", Technology and Culture 2 (2), p. 97-111 [100-101].
- ↑ Ismail b. Ali Ebu'l Feda history, Weltgeschichte, hrsg. von Fleischer and Reiske 1789-94, 1831.
- ↑ Alatas, Syed Farid (2006), "From Jami`ah to University: Multiculturalism and Christian–Muslim Dialogue", Current Sociology 54 (1): 112–32, doi:
- ↑ The Guinness Book Of Records, 1998, p. 242, ISBN 0-5535-7895-2
- ↑ 200.0 200.1 200.2 First Flights, Saudi Aramco World, January-February 1964, p. 8-9.
- ↑ Zayn Bilkadi (University of California, Berkeley), "The Oil Weapons", Saudi Aramco World, January-February 1995, p. 20-27.
- ↑ Muslin, Banglapedia. Asiatic Society of Bangladesh (2008)
- ↑ 203.0 203.1 Ahmad, S. (July-September 2005), "Rise and Decline of the Economy of Bengal", Asian Affairs 27 (3): 5-26
- ↑ Mason, Robert B. (1995). "New Looks at Old Pots: Results of Recent Multidisciplinary Studies of Glazed Ceramics from the Islamic World". Muqarnas: Annual on Islamic Art and Architecture XII. Brill Academic Publishers. ISBN 9004103147.
- ↑ David A. King, "Islamic Astronomy", pp. 168-169
- ↑ King, David A. (2005), In Synchrony with the Heavens, Studies in Astronomical Timekeeping and Instrumentation in Medieval Islamic Civilization: Instruments of Mass Calculation, Brill Publishers, ISBN 900414188X
- ↑ King, David A. (December 2003), "14th-Century England or 9th-Century Baghdad? New Insights on the Elusive Astronomical Instrument Called Navicula de Venetiis", Centaurus 45 (1-4): 204-226
- ↑ 208.0 208.1 Ahmad Y Hassan, Donald Routledge Hill (1986). Islamic Technology: An illustrated history, p. 54. Cambridge University Press. ISBN 0-521-42239-6.
- ↑ Alatas, Syed Farid (2006), "From Jami`ah to University: Multiculturalism and Christian–Muslim Dialogue", Current Sociology 54 (1): 112–132 [123–4], doi:
- ↑ F. L. Lewis (1992), Applied Optimal Control and Estimation, Englewood Cliffs, Prentice-Hall, New Jersey.
- ↑ 211.0 211.1 211.2 211.3 Adam Lucas (2006), Wind, Water, Work: Ancient and Medieval Milling Technology, p. 65. BRILL, ISBN 9004146490.
- ↑ Richard W. Bulliet (1987), "Medieval Arabic Tarsh: A Forgotten Chapter in the History of Printing", Journal of the American Oriental Society 107 (3), p. 427-438.
- ↑ Elly Dekker (1995), "An unrecorded medieval astrolabe quadrant from c. 1300", Annals of Science 52 (1), p. 1-47 [6].
- ↑ Robert Hannah (1997). "The Mapping of the Heavens by Peter Whitfield", Imago Mundi 49, pp. 161-162.
- ↑ 215.0 215.1 215.2 King, David A., "Astronomy and Islamic society", pp. 163–8, in Rashed, Roshdi; Morelon, Régis (1996), Encyclopedia of the History of Arabic Science, 1 & 3, Routledge, pp. 128-184, ISBN 0415124107
- ↑ 216.0 216.1 216.2 Donald Routledge Hill (1996), "Engineering", p. 766-9, in Rashed, Roshdi; Morelon, Régis (1996), Encyclopedia of the History of Arabic Science, Routledge, pp. 751-795, ISBN 0415124107
- ↑ Donald Routledge Hill (1996), "Engineering", p. 781, in Rashed, Roshdi; Morelon, Régis (1996), Encyclopedia of the History of Arabic Science, Routledge, pp. 751-95, ISBN 0415124107
- ↑ 218.0 218.1 Fielding H. Garrison, History of Medicine:
- ↑ 219.0 219.1 219.2 The World's First Soft Drink. 1001 Inventions, 2006.
- ↑ Juliette Rossant (2005), The World's First Soft Drink, Saudi Aramco World, September/October 2005, pp. 36-9
- ↑ 221.0 221.1 221.2 Donald Routledge Hill (1996), "Engineering", p. 759, in Rashed, Roshdi; Morelon, Régis (1996), Encyclopedia of the History of Arabic Science, Routledge, pp. 751-795, ISBN 0415124107
- ↑ 222.0 222.1 Adam Lucas (2006), Wind, Water, Work: Ancient and Medieval Milling Technology, p. 62. BRILL, ISBN 9004146490.
- ↑ 223.0 223.1 Peter Barrett (2004), Science and Theology Since Copernicus: The Search for Understanding, p. 18, Continuum International Publishing Group, ISBN 056708969X.
- ↑ Micheau, Francoise, "The Scientific Institutions in the Medieval Near East", pp. 988–991 in Morelon, Régis; Rashed, Roshdi (1996), Encyclopedia of the History of Arabic Science, 3, Routledge, ISBN 0415124107
- ↑ L. Gari (2002), "Arabic Treatises on Environmental Pollution up to the End of the Thirteenth Century", Environment and History 8 (4), pp. 475-488.
- ↑ A. Al Dayela and N. al-Zuhair (2006), "Single drug therapy in the treatment of male sexual/erectile dysfunction in Islamic medicine", Urology 68 (1): 253-4
- ↑ Regis Morelon, "General Survey of Arabic Astronomy", pp. 9-10, in Rashed, Roshdi; Morelon, Régis (1996), Encyclopedia of the History of Arabic Science, 1 & 3, Routledge, pp. 1-19, ISBN 0415124107
- ↑ The invention of cosmetics. 1001 Inventions.
- ↑ The Valuable Contribution of al-Razi (Rhazes) to the History of Pharmacy, FSTC
- ↑ 230.0 230.1 9 World Changing Inventions from the Middle East (5 December 2014). Retrieved on 26 March 2018.
- ↑ Ahmad Y. al-Hassan (2001), Science and Technology in Islam: Technology and applied sciences, pages 65–69, UNESCO
- ↑ Hassan, Ahmad Y. Alcohol and the Distillation of Wine in Arabic Sources. History of Science and Technology in Islam. Retrieved on 2014-04-19.
- ↑ The Economist: "Liquid fire – The Arabs discovered how to distil alcohol. They still do it best, say some" December 18, 2003
- ↑ (2013) Imperfect Perfection - Early Islamic Glass, English, A&C Black. ISBN 9789992194614.
- ↑ (2012) Man and Wound in the Ancient World: A History of Military Medicine from Sumer to the Fall of Constantinople. Potomac Books, 210. ISBN 9781597978484.
- ↑ Jack Kelly Gunpowder: Alchemy, Bombards, and Pyrotechnics: The History of the Explosive that Changed the World, Perseus Books Group: 2005, ISBN 0465037224, 9780465037223: pp. 2-5
- ↑ Needham, Volume 5, Part 7, 8–9, 80–82.
- ↑ Needham (1987), Volume 5, Part 7, 70–73, 120–124.
- ↑ Gernet (1996), 311.
- ↑ Day & McNeil (1996), 785.
- ↑ 241.0 241.1 Bourbaki (1998), page 46
- ↑ Britannica Concise Encyclopedia (2007). algebra
- ↑ Adam Robert Lucas (2005), "Industrial Milling in the Ancient and Medieval Worlds: A Survey of the Evidence for an Industrial Revolution in Medieval Europe", Technology and Culture 46 (1): 1–30 [10–1 & 27]
- ↑ Finger, Stanley (1994). Origins of Neuroscience: A History of Explorations Into Brain Function. Oxford University Press, 70. ISBN 978-0-19-514694-3.
- ↑ 245.0 245.1 245.2 (2017) Principles and Practice of Clinical Research. Academic Press, 3. ISBN 9780128499047.
- ↑ Lucas, Adam (2006), Wind, Water, Work: Ancient and Medieval Milling Technology, Brill Publishers, p. 65, ISBN 90-04-14649-0
- ↑ Banu Musa (authors), Donald Routledge Hill (translator) (1979), The book of ingenious devices (Kitāb al-ḥiyal), Springer, p. 23, ISBN 90-277-0833-9
- ↑ 248.0 248.1 Donald Routledge Hill, "Mechanical Engineering in the Medieval Near East", Scientific American, May 1991, p. 64-69. (cf. Donald Routledge Hill, Mechanical Engineering)
Donald Routledge Hill (1996), A History of Engineering in Classical and Medieval Times, Routledge, p.224. - ↑ Young, M. J. L. (1990). The Cambridge history of Arabic literature. Cambridge University Press, 264. ISBN 0-521-32763-6.
- ↑ Banu Musa (authors), Donald Routledge Hill (translator) (1979), The book of ingenious devices (Kitāb al-ḥiyal), Springer, p. 21, ISBN 90-277-0833-9
- ↑ (12 July 2017) "Loudspeakers Optional: A history of non-loudspeaker-based electroacoustic music". Organised Sound 22 (2): 195–205. Cambridge University Press. doi:10.1017/S1355771817000103.
- ↑ (12 July 2017) "The Forgotten History of Repetitive Audio Technologies". Organised Sound 22 (2): 187–194. Cambridge University Press. doi:10.1017/S1355771817000097.
- ↑ (2006) Major & Mrs Holt's Pocket Battlefield Guide to Ypres & Passchendaele. Casemate Publishers, 7. ISBN 9781844153770.
- ↑ Lienhard, John H. (1988). The Flying Monk. University of Houston. Retrieved on 2015-02-06.
- ↑ Lynn Townsend White, Jr. (Spring, 1961). "Eilmer of Malmesbury, an Eleventh Century Aviator: A Case Study of Technological Innovation, Its Context and Tradition", Technology and Culture 2 (2), p. 97-111 [100f.]
- ↑ Lynn Townsend White, Jr. (Spring, 1961). "Eilmer of Malmesbury, an Eleventh Century Aviator: A Case Study of Technological Innovation, Its Context and Tradition", Technology and Culture 2 (2), p. 97-111 [101]
- ↑ (2014) The Oxford Encyclopedia of Philosophy, Science, and Technology in Islam. Oxford University Press, 137. ISBN 9780199812578.
- ↑ (1958) Studies in Early Petroleum History. Brill Publishers, 149.
- ↑ (2017) Handbook of Industrial Chemistry and Biotechnology. Springer Science+Business Media, 18. ISBN 9783319522876.
- ↑ Zayn Bilkadi (University of California, Berkeley), "The Oil Weapons", Saudi Aramco World, January–February 1995, pp. 20–27.
- ↑ (2012) Alchemy. Courier Corporation, 89. ISBN 9780486151144.
- ↑ Modanlou, Houchang D. (November 2008). "A tribute to Zakariya Razi (865 – 925 AD), an Iranian pioneer scholar". Archives of Iranian Medicine 11 (6): 673–677. PMID 18976043. “Abu Bakr Mohammad Ibn Zakariya al-Razi, known in the West as Rhazes, was born in 865 AD in the ancient city of Rey, Near Tehran. A musician during his youth he became an alchemist. He discovered alcohol and sulfuric acid. He classified substances as plants, organic, and inorganic.”
- ↑ Schlosser, Stefan (May 2011). "Distillation – from Bronze Age till today". “Al-Razi (865–925) was the preeminent Pharmacist and physician of his time [5]. The discovery of alcohol, first to produce acids such as sulfuric acid, writing up extensive notes on diseases such as smallpox and chickenpox, a pioneer in ophthalmology, author of first book on pediatrics, making leading contributions in inorganic and organic chemistry, also the author of several philosophical works.”
- ↑ Dr. Emily Winterburn (National Maritime Museum) (2005). Using an Astrolabe. Foundation for Science Technology and Civilisation. Retrieved on 2008-01-22.
- ↑ Bosworth, C. E. (Autumn 1981), "A Mediaeval Islamic Prototype of the Fountain Pen?", Journal of Semitic Studies XXVl (i)
- ↑ "Origins of the Fountain Pen ". Muslimheritage.com. Retrieved on September 18 2007.
- ↑ Lindsay, James E. (2005), Daily Life in the Medieval Islamic World, Greenwood Publishing Group, p. 131, ISBN 0313322708
- ↑ O'Connor, John J.; Robertson, Edmund F., "Abu Mahmud Hamid ibn al-Khidr Al-Khujandi", MacTutor History of Mathematics archive, University of St Andrews.
- ↑ Islam, Knowledge, and Science. University of Southern California. Retrieved on 2008-01-22.
- ↑ Donald Routledge Hill (1996), "Engineering", p. 783, in Rashed, Roshdi; Morelon, Régis (1996), Encyclopedia of the History of Arabic Science, 1 & 3, Routledge, pp. 751-95, ISBN 0415124107
- ↑ David A. King, "Reflections on some new studies on applied science in Islamic societies (8th-19th centuries)", Islam & Science, June 2004
- ↑ David J Roxburgh (2000), Muqarnas: An Annual on the Visual Culture of the Islamic World, p. 21, Brill Publishers, ISBN 9004116699.
- ↑ Josef W. Meri (2006), Medieval Islamic Civilization: An Encyclopedia, p. 75, Taylor and Francis, ISBN 0415966914.
- ↑ David A. King (1999), World-maps for Finding the Direction and Distance to Mecca: Innovation and Tradition in Islamic Science, p. 17, Brill Publishers, ISBN 9004113673.
- ↑ Kunitzsch, Paul (2003), "The Transmission of Hindu-Arabic Numerals Reconsidered", in J. P. Hogendijk; A. I. Sabra, The Enterprise of Science in Islam: New Perspectives, MIT Press, pp. 3–22 (12–13), ISBN 978-0-262-19482-2
- ↑ Berggren, J. Lennart (2007). "Mathematics in Medieval Islam", The Mathematics of Egypt, Mesopotamia, China, India, and Islam: A Sourcebook. Princeton University Press, 518. ISBN 978-0-691-11485-9.
- ↑ O'Connor, John J.; Robertson, Edmund F., "Abu'l Hasan Ahmad ibn Ibrahim Al-Uqlidisi", MacTutor History of Mathematics archive, University of St Andrews.
- ↑ Bosworth, C. E. (1981). "A Mediaeval Islamic Prototype of the Fountain Pen?". Journal of Semitic Studies 26 (1): 229–234. doi:10.1093/jss/26.2.229. “We wish to construct a pen which can be used for writing without having recourse to an ink-holder and whose ink will be contained inside it. A person can fill it with ink and write whatever he likes. The writer can put it in his sleeve or anywhere he wishes and it will not stain nor will any drop of ink leak out of it. The ink will flow only when there is an intention to write. We are unaware of anyone previously ever constructing (a pen such as this) and an indication of 'penetrating wisdom' to whoever contemplates it and realises its exact significance and purpose. I exclaimed, 'Is this possible?' He replied, 'It is possible if God so wills'.”
- ↑ O'Connor, John J.; Robertson, Edmund F., "Abu Mahmud Hamid ibn al-Khidr Al-Khujandi", MacTutor History of Mathematics archive, University of St Andrews.
- ↑ Ingle, John Ide; Baumgartner, J. Craig (2008). Ingle's Endodontics. PMPH-USA. p. 1281."The individual first credited with the principle of extraction and replantation was an Arabian physician by the name of Abulcasis who practiced in the eleventh century."
- ↑ Ingle, John Ide; Bakland, Leif K. (2002). Endodontics. PMPH-USA. p. 727."Abulcasis, an Arabian physician practicing in the eleventh century, is the first credited with recording the principle of extraction/replantation."
- ↑ Shevel, E (April 2004). "Role of the extracranial arteries in migraine headache: a review.". Cranio : The Journal of Craniomandibular Practice 22 (2): 132–6. doi:10.1179/crn.2004.017. PMID 15134413.
- ↑ Piero Ariotti (Winter, 1968). "Galileo on the Isochrony of the Pendulum", Isis 59 (4), p. 414.
- ↑ 284.0 284.1 284.2 284.3 Ibrahim B. Syed PhD, "Islamic Medicine: 1000 years ahead of its times", Journal of the International Society for the History of Islamic Medicine 2 (2002): 2-9 [7].
- ↑ 285.0 285.1 285.2 285.3 Finger, Stanley (1994), Origins of Neuroscience: A History of Explorations Into Brain Function, Oxford University Press, p. 70, ISBN 0195146948
- ↑ Ancient surgery
- ↑ Zafarul-Islam Khan, At The Threshold (sic) Of A New Millennium – II, The Milli Gazette.
- ↑ 288.0 288.1 288.2 288.3 288.4 Khaled al-Hadidi (1978), "The Role of Muslem Scholars in Oto-rhino-Laryngology", The Egyptian Journal of O.R.L. 4 (1), p. 1-15. (cf. Ear, Nose and Throat Medical Practice in Muslim Heritage, Foundation for Science Technology and Civilization.)
- ↑ 289.0 289.1 Abdul Nasser Kaadan PhD, "Albucasis and Extraction of Bladder Stone", Journal of the International Society for the History of Islamic Medicine, 2004 (3): 28-33.
- ↑ 290.0 290.1 A. I. Makki. "Needles & Pins", AlShindagah 68, January-February 2006.
- ↑ 291.0 291.1 291.2 Sigrid Hunke (1969), Allah Sonne Uber Abendland, Unser Arabische Erbe, Second Edition, p. 279-280: "The science of medicine has gained a great and extremely important discovery and that is the use of general anaesthetics for surgical operations, and how unique, efficient, and merciful for those who tried it the Muslim anaesthetic was. It was quite different from the drinks the Indians, Romans and Greeks were forcing their patients to have for relief of pain. There had been some allegations to credit this discovery to an Italian or to an Alexandrian, but the truth is and history proves that, the art of using the anaesthetic sponge is a pure Muslim technique, which was not known before. The sponge used to be dipped and left in a mixture prepared from cannabis, opium, hyoscyamus and a plant called Zoan."
(cf. Prof. Dr. M. Taha Jasser, Anaesthesia in Islamic medicine and its influence on Western civilization, Conference on Islamic Medicine) - ↑ 292.0 292.1 Patricia Skinner (2001), Unani-tibbi, Encyclopedia of Alternative Medicine
- ↑ Salah Zaimeche (2002), The Muslim Pioneers of Astronomy, FSTC
- ↑ Seyyed Hossein Nasr (1993), An Introduction to Islamic Cosmological Doctrines, pp. 135-6, State University of New York Press, ISBN 0791415163
- ↑ Robert Briffault (1938), The Making of Humanity, p. 191
- ↑ Marlene Ericksen (2000). Healing with Aromatherapy, p. 9. McGraw-Hill Professional. ISBN 0658003828.
- ↑ 297.0 297.1 Khwarizm, Foundation for Science Technology and Civilisation.
- ↑ 298.0 298.1 Will Durant (1950). The Story of Civilization IV: The Age of Faith, p. 239-45.
- ↑ 299.0 299.1 299.2 299.3 Robert E. Hall (1973). "Al-Khazini", Dictionary of Scientific Biography, Vol. VII, p. 346.
- ↑ Marshall Clagett (1961). The Science of Mechanics in the Middle Ages, p. 64. University of Wisconsin Press.
- ↑ Donald Routledge Hill (1985). "Al-Biruni's mechanical calendar", Annals of Science 42, p. 139-163.
- ↑ Tuncer Oren (2001). "Advances in Computer and Information Sciences: From Abacus to Holonic Agents", Turk J Elec Engin 9 (1), p. 63-70 [64].
- ↑ Islam, Knowledge, and Science. University of Southern California.
- ↑ Kriss, Timothy C.; Kriss, Vesna Martich (April 1998), "History of the Operating Microscope: From Magnifying Glass to Microneurosurgery", Neurosurgery 42 (4): 899–907, doi:
- ↑ Dr. Nader El-Bizri, "Ibn al-Haytham or Alhazen", in Josef W. Meri (2006), Medieval Islamic Civilization: An Encyclopaedia, Vol. II, p. 343-345, Routledge, New York, London.
- ↑ R. S. Elliott (1966), Electromagnetics, Chapter 1, McGraw-Hill
- ↑ 307.0 307.1 Nicholas J. Wade, Stanley Finger (2001), "The eye as an optical instrument: from camera obscura to Helmholtz's perspective", Perception 30 (10), p. 1157-1177.
- ↑ Tyler, Royall (2003), The Tale of Genji, Penguin Classics, pp. i-ii & xii, ISBN 014243714X
- ↑ Tyler, Royall (2003), The Tale of Genji, Penguin Classics, p. xxvi, ISBN 014243714X
- ↑ Jorge Luis Borges, The Total Library: [The Tale of Genji, as translated by Arthur Waley,] is written with an almost miraculous naturalness, and what interests us is not the exoticism — the horrible word — but rather the human passions of the novel. Such interest is just: Murasaki's work is what one would quite precisely call a psychological novel. ... I dare to recommend this book to those who read me. The English translation that has inspired this brief insufficient note is called The Tale of Genji.
- ↑ Prof. Nil Sari (Istanbul University, Cerrahpasha Medical School) (06 June, 2007). Hindiba: A Drug for Cancer Treatment in Muslim Heritage. FSTC Limited.
- ↑ 312.0 312.1 Nurdeen Deuraseh, "Ahadith of the Prophet on Healing in Three Things (al-Shifa’ fi Thalatha): An Interpretational", Journal of the International Society for the History of Islamic Medicine, 2004 (3): 14-20 [18].
- ↑ Yalcin Tekol (2007), "The medieval physician Avicenna used an herbal calcium channel blocker, Taxus baccata L.", Phytotherapy Research 21 (7): 701-2.
- ↑ Philip K. Hitti (cf. Dr. Kasem Ajram (1992), Miracle of Islamic Science, Appendix B, Knowledge House Publishers. ISBN 0911119434).
- ↑ Dr. Z. Idrisi, PhD (2005). The Muslim Agricultural Revolution and its influence on Europe. The Foundation for Science, Technology and Civilization, UK.
- ↑ Dr. A. Zahoor (1997). Al-Zarqali (Arzachel), University of Indonesia.
- ↑ Sivin (1995), III, 22.
- ↑ Ebrey, Walthall, and Palais (2006), 162.
- ↑ Ahmad Y Hassan, Flywheel Effect for a Saqiya.
- ↑ Glick, Thomas F.; Livesey, Steven John; Wallis, Faith (2005), Medieval Science, Technology, and Medicine: An Encyclopedia, Routledge, p. 30, ISBN 0415969301
- ↑ Encyclopedia Britannica (2008). calico
- ↑ Donald Routledge Hill (1996), "Engineering", p. 766, in Rashed, Roshdi; Morelon, Régis (1996), Encyclopedia of the History of Arabic Science, Routledge, pp. 751-795, ISBN 0415124107
- ↑ G. Wiet, V. Elisseeff, P. Wolff, J. Naudu (1975). History of Mankind, Vol 3: The Great medieval Civilisations, p. 649. George Allen & Unwin Ltd, UNESCO.
- ↑ "The Tale of Genji" Encyclopædia Britannica Online Academic Edition. Encyclopædia Britannica Inc.
- ↑ The Japanese. Reischauer, Edwin O. Belknap Press. Cambridge, MA 1980. p. 49. ISBN 0-674-47178-4.
- ↑ Smith, A. Mark, ed. and trans. (2001) Alhacen's Theory of visual perception : a critical edition, with English translation and commentary, of the first three books of Alhacen's De aspectibus, [the medieval latin version of Ibn al-Haytham's Kitāb al-Manāẓir], Transactions of the American Philosophical Society, 2 vols: 91(#4 — Vol 1 Commentary and Latin text); 91(#5 — Vol 2 English translation). (Philadelphia: American Philosophical Society), 2001. Books I-III (2001) Vol 1 Commentary and Latin text via JSTOR; Vol 2 English translation, Notes, Bibl. via JSTOR
- ↑ User, Super. History of Camera Obscuras – Kirriemuir Camera Obscura.
- ↑ Eder, JOSEF MARIA (1945). HISTORY OF PHOTOGRAPHY, 37.
- ↑ (April 1998) "History of the Operating Microscope: From Magnifying Glass to Micro neurosurgery". Neurosurgery 42 (4): 899–907. doi:10.1097/00006123-199804000-00116. PMID 9574655.
- ↑ Jim Al-Khalili (4 January 2009). "The 'first true scientist'". BBC News. http://news.bbc.co.uk/2/hi/7810846.stm.
- ↑ Tracey Tokuhama-Espinosa (2010). Mind, Brain, and Education Science: A Comprehensive Guide to the New Brain-Based Teaching. W.W. Norton & Company, 39. ISBN 978-0-393-70607-9. “Alhazen (or Al-Haytham; 965–1039) was perhaps one of the greatest physicists of all times and a product of the Islamic Golden Age or Islamic Renaissance (7th–13th centuries). He made significant contributions to anatomy, astronomy, engineering, mathematics, medicine, ophthalmology, philosophy, physics, psychology, and visual perception and is primarily attributed as the inventor of the scientific method, for which author Bradley Steffens (2006) describes him as the "first scientist".”
- ↑ Diana Twede (2005). "The Origins of Paper Based Packaging". Conference on Historical Analysis & Research in Marketing Proceedings 12: 288–300 [289]. Retrieved on March 20, 2010.
- ↑ Pacey, Arnold [1990] (1991). Technology in World Civilization: A Thousand-Year History, First MIT Press paperback, Cambridge MA: The MIT Press, 23-24.
- ↑ Maillard, Adam P. Fraise, Peter A. Lambert, Jean-Yves (2007). Principles and Practice of Disinfection, Preservation and Sterilization. Oxford: John Wiley & Sons, 4. ISBN 0470755067.
- ↑ Parker, L. M., “Medieval Traders as International Change Agents: A Comparison with Twentieth Century International Accounting Firms,” The Accounting Historians Journal, 16(2) (1989): 107-118.
- ↑ MEDIEVAL TRADERS AS INTERNATIONAL CHANGE AGENTS: A COMMENT, Michael Scorgie, The Accounting Historians Journal, Vol. 21, No. 1 (June 1994), pp. 137-143
- ↑ 337.0 337.1 337.2 337.3 337.4 Hassan, Ahmad Y, Transfer Of Islamic Technology To The West, Part II: Transmission Of Islamic Engineering, History of Science and Technology in Islam
Ahmad Y Hassan. The Origin of the Suction Pump - Al-Jazari 1206 A.D. - ↑ Donald Routledge Hill (1996). A history of engineering in classical and medieval times. Routledge, 203, 223, 242. ISBN 0-415-15291-7.
- ↑ Abu Ishaq Ibrahim Ibn Yahya Al-Zarqali | Muslim Heritage.
- ↑ (2017) Wind energy engineering: a handbook for onshore and offshore wind turbines. Academic Press, 127-143. ISBN 0128094516. “Ibn Bassal (AD 1038–75) of Al Andalus (Andalusia) pioneered the use of a flywheel mechanism in the noria and saqiya to smooth out the delivery of power from the driving device to the driven machine”
- ↑ Ahmad Y Hassan, Flywheel Effect for a Saqiya.
- ↑ Needham, Volume 5, Part 1, 201–202.
- ↑ Gernet (1996), 335.
- ↑ Bowman (2000), 599.
- ↑ Day & McNeil (1996), 70.
- ↑ Lorch, R. P. (1976), "The Astronomical Instruments of Jabir ibn Aflah and the Torquetum", Centaurus 20 (1): 11–34, doi:
- ↑ Harding, David (1990). Weapons: An International Encyclopedia from 5000 B.C. to 2000 A.D.. Diane Publishing Company, 111. ISBN 0756784360.
- ↑ Linear astrolabe, Encyclopædia Britannica.
- ↑ First Birds' Inn: About the Sport of Racing Pigeons
- ↑ Abdel Aziz al-Jaraki (2007), When Ridhwan al-Sa’ati Anteceded Big Ben by More than Six Centuries, Foundation for Science Technology and Civilisation.
- ↑ Scott Farrell, Weaponry: The Trebuchet
- ↑ Philip Daileader, On the Social Origins of Medieval Institutions
- ↑ Jim Bradbury, Medieval Siege
- ↑ 101 gadgets that changed the world
- ↑ Roberto Moreno, Koenraad Van Cleempoel, David King (2002). "A Recently Discovered Sixteenth-Century Spanish Astrolabe", Annals of Science 59 (4), p. 331-362 [333].
- ↑ David A. King (1984). "Architecture and Astronomy: The Ventilators of Medieval Cairo and Their Secrets", Journal of the American Oriental Society 104 (1), p. 97-133.
- ↑ Hugh N. Kennedy (1985), "From Polis To Madina: Urban Change In Late Antique And Early Islamic Syria", Past & Present (Oxford University Press) 106 (1): 3–27 [10–1], doi:
- ↑ Lorch, R. P. (1976). "The Astronomical Instruments of Jabir ibn Aflah and the Torquetum". Centaurus 20 (1): 11–34. doi:10.1111/j.1600-0498.1976.tb00214.x. Bibcode: 1976Cent...20...11L.
- ↑ (1997) State and Rural Society in Medieval Islam: Sultans, Muqtaʻs, and Fallahun. BRILL, 119, 211, 215. ISBN 9789004106499.
- ↑ Bradbury, Jim (1992). The Medieval Siege. The Boydell Press. ISBN 0-85115-312-7.
- ↑ Arms and Men: The Trebuchet. Historynet.com. Retrieved on 2016-08-29.
- ↑ Tom and Mary Anne Evans. Guitars: From the Renaissance to Rock. Paddington Press Ltd 1977 p.16
- ↑ Houtsma, M.Th. (1993). E. J. Brill's First Encyclopaedia of Islam, 1913–1936. Brill, 1011–. ISBN 978-90-04-09790-2.
- ↑ Georges Ifrah (2001). The Universal History of Computing: From the Abacus to the Quatum Computer, p. 171, Trans. E.F. Harding, John Wiley & Sons, Inc. (See [3])
- ↑ Professor Lynn Townsend White, Jr. (cf. The Automata of Al-Jazari, Topkapi Palace Museum, Istanbul.)
- ↑ 366.0 366.1 A 13th Century Programmable Robot. University of Sheffield.
- ↑ Ancient Discoveries, Episode 11: Ancient Robots, History Channel, http://www.youtube.com/watch?v=rxjbaQl0ad8, retrieved on 6 September 2008
- ↑ 368.0 368.1 368.2 368.3 Howard R. Turner (1997), Science in Medieval Islam: An Illustrated Introduction, p. 181, University of Texas Press, ISBN 0292781490.
- ↑ 369.0 369.1 Donald Routledge Hill, "Engineering", in Roshdi Rashed, ed., Encyclopedia of the History of Arabic Science, Vol. 2, p. 751-795 [776]. Routledge, London and New York.
- ↑ Ahmad Y Hassan, Al-Jazari and the History of the Water Clock
- ↑ Ibn al-Razzaz Al-Jazari (ed. 1974), The Book of Knowledge of Ingenious Mechanical Devices, translated and annotated by Donald Routledge Hill, Dordrecht / D. Reidel, part II
- ↑ Silvio A. Bedini, Francis R. Maddison (1966). "Mechanical Universe: The Astrarium of Giovanni de' Dondi", Transactions of the American Philosophical Society 56 (5), p. 1-69.
- ↑ 373.0 373.1 Kennedy, Edward S. (1962), "Review: The Observatory in Islam and Its Place in the General History of the Observatory by Aydin Sayili", Isis 53 (2): 237-239
- ↑ 374.00 374.01 374.02 374.03 374.04 374.05 374.06 374.07 374.08 374.09 374.10 Hassan, Ahmad Y. Gunpowder Composition for Rockets and Cannon in Arabic Military Treatises In Thirteenth and Fourteenth Centuries. Ahmad Y Hassan. Retrieved on 2008-06-08.
- ↑ Emilie Savage-Smith (1988), "Gleanings from an Arabist's Workshop: Current Trends in the Study of Medieval Islamic Science and Medicine", Isis 79 (2): 246-266 [263].
- ↑ Cambridge University Press, ISBN 0521547245.
- ↑ 377.0 377.1 Donald Routledge Hill (1996), "Engineering", p. 771, in Rashed, Roshdi; Morelon, Régis (1996), Encyclopedia of the History of Arabic Science, Routledge, pp. 751-95, ISBN 0415124107
- ↑ Augustyn, pages 27-28
- ↑ Ancient Discoveries, Episode 12: Machines of the East. History Channel. Retrieved on 2008-09-07.
- ↑ (2019) Homo Problematis Solvendis - Problem-solving Man: A History of Human Creativity. Springer, 50-51. ISBN 9789811331015.
- ↑ Banu Musa (authors), Donald Routledge Hill (translator) (1979), The book of ingenious devices (Kitāb al-ḥiyal), Springer, pp. 23–4, ISBN 90-277-0833-9
- ↑ Lotfi Romdhane & Saïd Zeghloul (2010), "al-Jazari (1136–1206)", History of Mechanism and Machine Science (Springer) 7: 1–21, doi: , ISBN 978-90-481-2346-9, ISSN 1875-3442
- ↑ Donald Hill, "Mechanical Engineering in the Medieval Near East", Scientific American, May 1991, pp. 64–9 (cf. Donald Hill, Mechanical Engineering Template:Webarchive)
- ↑ Fowler, Charles B. (October 1967). "The Museum of Music: A History of Mechanical Instruments". Music Educators Journal 54 (2): 45–49. doi:10.2307/3391092.
- ↑ Fowler, Charles B. (October 1967). "The Museum of Music: A History of Mechanical Instruments". Music Educators Journal 54 (2): 45–49. doi:10.2307/3391092.
- ↑ Fowler, Charles B. (October 1967), "The Museum of Music: A History of Mechanical Instruments", Music Educators Journal (MENC_ The National Association for Music Education) 54 (2): 45–49, doi:
- ↑ Thomas Christensen (2007). Did East Asian Printing Traditions Influence the European Renaissance?. Arts of Asia Magazine (to appear). Retrieved on 2006-10-18.
- ↑ Sohn, Pow-Key (Summer 1993). "Printing Since the 8th Century in Korea". Koreana 7 (2): 4–9.
- ↑ (2004) The Eastern Origins of Western Civilisation. Cambridge University Press, 141. ISBN 9780521547246.
- ↑ Partington, James Riddick (1999), A History of Greek Fire and Gunpowder, Johns Hopkins University Press, p. 203, ISBN 0-8018-5954-9, https://books.google.com/?id=30IJLnwpc8EC
- ↑ Template:Cite
- ↑ Template:Cite
- ↑ David A. King (1983). "The Astronomy of the Mamluks", Isis 74 (4), p. 531-555 [545-546].
- ↑ King, David A. (1983), "The Astronomy of the Mamluks", Isis 74 (4): 531-555 [547-8]
- ↑ Jones, Lawrence (December 2005), "The Sundial And Geometry", North American Sundial Society 12 (4)
- ↑ G. R. Tibbetts (1973), "Comparisons between Arab and Chinese Navigational Techniques", Bulletin of the School of Oriental and African Studies 36 (1): 97-108 [105-6]
- ↑ Irfan Habib (2011), Economic History of Medieval India, 1200–1500, p. 53, Pearson Education
- ↑ 398.0 398.1 Irfan Habib (2011), Economic History of Medieval India, 1200–1500, page 53, Pearson Education
- ↑ Irfan Habib (2011), Economic History of Medieval India, 1200–1500, pp. 53–54, Pearson Education
- ↑ E. S. Kennedy (1947), "Al-Kashi's Plate of Conjunctions", Isis 38 (1-2), p. 56-59 [56].
- ↑ 401.0 401.1 E. S. Kennedy (1950), "A Fifteenth-Century Planetary Computer: al-Kashi's Tabaq al-Manateq I. Motion of the Sun and Moon in Longitude", Isis 41 (2), p. 180-183.
- ↑ E. S. Kennedy (1952), "A Fifteenth-Century Planetary Computer: al-Kashi's Tabaq al-Maneteq II: Longitudes, Distances, and Equations of the Planets", Isis 43 (1), p. 42-50.
- ↑ E. S. Kennedy (1951), "An Islamic Computer for Planetary Latitudes", Journal of the American Oriental Society 71 (1), p. 13-21.
- ↑ (2011) "Military Transformation in the Ottoman Empire and Russia, 1500–1800". Kritika: Explorations in Russian and Eurasian History 12 (2): 281–319 [294]. doi:10.1353/kri.2011.0018.
- ↑ Weinberg, Bennett Alan; Bonnie K. Bealer (2001), The world of caffeine, Routledge, pp. Page 3–4, ISBN 978-0-415-92723-9, https://books.google.com/?id=Qyz5CnOaH9oC&pg=PA3&dq=coffee+goat+ethiopia+Kaldi
- ↑ Ireland, Corydon. Of the bean I sing. Retrieved on 21 July 2011.
- ↑ (2013) Gunpowder and Firearms in the Mamluk Kingdom: A Challenge to Medieval Society (1956). Routledge, 126. ISBN 9781136277320.
- ↑ 408.0 408.1 408.2 Salim Al-Hassani (19 June 2008). The Astronomical Clock of Taqi Al-Din: Virtual Reconstruction. FSTC. Retrieved on 2008-07-02.
- ↑ Ahmad Y Hassan (1976). Taqi al-Din and Arabic Mechanical Engineering, p. 34-35. Institute for the History of Arabic Science, University of Aleppo.
- ↑ Donald Routledge Hill and Ahmad Y Hassan. Engineering in Arabic-Islamic Civilization. History of Science and Technology in Islam. Retrieved on 2008-07-03.
- ↑ Routledge Hill, Donald. "Engineering". Encyclopedia of the History of Arabic Science 2: 751–795. London and New York: Routledge.
- ↑ pencil, Encyclopædia Britannica
- ↑ Topdemir, Hüseyin Gazi (1999), Takîyüddîn'in Optik Kitabi, Ministery of Culture Press, Ankara (cf. Dr. Hüseyin Gazi Topdemir (30 June 2008). Taqi al-Din ibn Ma‘ruf and the Science of Optics: The Nature of Light and the Mechanism of Vision. FSTC Limited. Retrieved on 2008-07-04.)
- ↑ Sevim Tekeli, "Taqi al-Din", in Helaine Selin (1997), Encyclopaedia of the History of Science, Technology, and Medicine in Non-Western Cultures, Kluwer Academic Publishers, ISBN 0792340663
- ↑ Sayili, Aydin (1991), The Observatory in Islam, pp. 289–305 (cf. Dr. Salim Ayduz (26 June 2008). Taqi al-Din Ibn Ma’ruf: A Bio-Bibliographical Essay. Retrieved on 2008-07-04.)
- ↑ 416.0 416.1 Irfan Habib (1992), "Akbar and Technology", Social Scientist 20 (9-10), pp. 3-15 [3-4].
- ↑ Rousselet (1875), page 290
- ↑ Sivaramakrishnan (2001), pages 4-5
- ↑ Blechynden (1905), page 215
- ↑ 420.0 420.1 A. K. Bag (2005), "Fathullah Shirazi: Cannon, Multi-barrel Gun and Yarghu", Indian Journal of History of Science 40 (3): 431-36
- ↑ Friedrich Christian Charles August; Gustav von Buchwald (1890). The Emperor Akbar. Trübner & Co.. Retrieved on 2008-04-04.
- ↑ 422.0 422.1 Savage-Smith, Emilie (1985), Islamicate Celestial Globes: Their history, Construction, and Use, Smithsonian Institution Press, Washington, D.C.
- ↑ American Physical Society - This Month in Physics - History Lens Crafters Circa 1590: Invention of the Microscope
- ↑ Encyclopedia Britannica (2008). chintz
- ↑ 425.0 425.1 Old Walled City of Shibam, UNESCO World Heritage Centre
- ↑ Helfritz, Hans (April 1937), "Land without shade", Journal of the Royal Central Asian Society 24 (2): 201–16
- ↑ Razpush, Shahnaz (15 December 2000). ḠALYĀN 261–265. Encyclopedia Iranica. Retrieved on 19 December 2012.
- ↑ Al-Hassan, Ahmad Y., Taqi ad-Din and Arabic Mechanical Engineering, with an offset copy of MS Chester Beatty No. 5232, Institute for the History of Arabic Science, University of Aleppo, 1976, pp. 38-42
- ↑ (2014) The Design of High-Efficiency Turbomachinery and Gas Turbines. MIT Press, 3. ISBN 9780262526685.
- ↑ Hassani, A. M. (1979). "Arab Scientists Revisited: Ibn Ash-Shatir and Taqi ed-Din". History of Science 17: 135–140. Bibcode: 1979HisSc..17..135H.
- ↑ Hill, Donald R. (1978). "Review of Taqī-al-Dīn and Arabic Mechanical Engineering. With the Sublime Methods of Spiritual Machines. An Arabic Manuscript of the Sixteenth Century". Isis 69 (1): 117–118.
- ↑ Bowles, Edmund A. (2006), "The impact of Turkish military bands on European court festivals in the 17th and 18th centuries", Early Music (Oxford University Press) 34 (4): 533–60, doi:
- ↑ Fazlıoğlu, İhsan (2014). "Taqī al-Dīn Abū Bakr Muḥammad ibn Zayn al-Dīn Maҁrūf al-Dimashqī al-Ḥanafī", Biographical Encyclopedia of Astronomers. Springer, New York, NY, 2123–2126. DOI:10.1007/978-1-4419-9917-7_1360. ISBN 978-1-4419-9916-0.
- ↑ Bag, A.K. (2005). "Fathullah Shirazi: Cannon, Multi-barrel Gun and Yarghu". Indian Journal of History of Science 40 (3): 431–436. ISSN 0019-5235.
- ↑ Clarence-Smith, William Gervase, Science and technology in early modern Islam, c.1450-c.1850, Global Economic History Network, London School of Economics, p. 7, http://www.lse.ac.uk/collections/economicHistory/GEHN/GEHNPDF/ScienceandTechnology-WGCS.pdf
- ↑ MughalistanSipahi (19 June 2010). Islamic Mughal Empire: War Elephants Part 3. Retrieved on 28 November 2012.
- ↑ galileo.rice.edu The Galileo Project > Science > The Telescope by Al Van Helden "The Hague discussed the patent applications first of Hans Lipperhey of Middelburg, and then of Jacob Metius of Alkmaar... another citizen of Middelburg, Sacharias Janssen had a telescope at about the same time but was at the Frankfurt Fair where he tried to sell it"
- ↑ 1679-1681 – R P Verbiest's Steam Chariot. History of the Automobile: origin to 1900. Hergé. Retrieved on 2009-05-08.
- ↑ Setright, L. J. K. (2004). Drive On!: A Social History of the Motor Car. Granta Books. ISBN 1-86207-698-7.
- ↑ Encyclopedia Britannica (2008). interior design
- ↑ Encyclopedia Britannica (2008). crewel work
- ↑ (1987) Science and Civilisation in China: Volume 5, Chemistry and Chemical Technology, Part 7, Military Technology: The Gunpowder Epic. Cambridge University Press, 446. ISBN 9780521303583.
- ↑ Winter, Frank H. (1992). "Who First Flew in a Rocket?", Journal of the British Interplanetary Society 45 (July 1992), p. 275-80
- ↑ Harding, John (2006), Flying's strangest moments: extraordinary but true stories from over one thousand years of aviation history, Robson Publishing, p. 5, ISBN 1-86105-934-5
- ↑ Banjo. Oxford University Press. Retrieved on 23 February 2015.Template:Subscription required
- ↑ Technological Dynamism in a Stagnant Sector: Safety at Sea during the Early Industrial Revolution.
- ↑ (2017) India, Modernity and the Great Divergence: Mysore and Gujarat (17th to 19th C.). BRILL, 235. ISBN 9789004330795. “According to Amithaba Ghosh, 'Tipu's rockets could be considered as the first missiles, because the rocket could only carry itself, the propellant, its casing and the stabilizing stick', while 'the missile is distinguished by its ability to carry something more - like the sword or the bomb'. Tipu also used sword fixed rockets.”
- ↑ 448.0 448.1 Roddam Narasimha (1985), Rockets in Mysore and Britain, 1750-1850 A.D., National Aeronautical Laboratory and Indian Institute of Science
- ↑ Encyclopedia Britannica (2008), "rocket and missile"
- ↑ Todd, Jan (1995). From Milo to Milo: A History of Barbells, Dumbells, and Indian Clubs. Accessed in September 2008. Hosted on the LA84 Foundation Sports Library.
- ↑ 451.0 451.1 Acott, Chris (1999). "JS Haldane, JBS Haldane, L Hill, and A Siebe: A brief resume of their lives.". South Pacific Underwater Medicine Society journal 29 (3). ISSN 0813-1988. OCLC 16986801. Retrieved on 2009-04-21.
- ↑ (15 May 2018) Bountiful Empire: A History of Ottoman Cuisine. Reaktion Books. ISBN 978-1-78023-939-2.
- ↑ Seeking shawarma? Pining for (al) pastor? We find 4 great shaved meats around Charlotte. Retrieved on 4 May 2017.
- ↑ (17 November 2010) Encyclopedia of Jewish Food. HMH. ISBN 978-0-544-18631-6.
- ↑ Connors; Dupuis & Morgan (1992) "Badminton" from The Olympics Factbook. Page 195
- ↑ Guillain (2004), page 47
- ↑ Quick, D. (1970). "A History Of Closed Circuit Oxygen Underwater Breathing Apparatus". Royal Australian Navy, School of Underwater Medicine. RANSUM-1-70. Retrieved on 2009-03-16.
- ↑ Maxim's 1884 Prototype Automatic Rifle Based on definition as being fully-automatic. James Puckle in 1718 made a "multi shot gun" that has been called a "machine gun" but not automatic, more like a revolver. Richard Gatling's 1861 Gatling Gun hand cranked so is a 'semi-automatic machine gun'
- ↑ 459.0 459.1 根本智『パイオニア飛行機物語』(オーム社、1996年、ISBN 4-274-0231401)、p66
- ↑ Anderson, L. I., "John Stone Stone on Nikola Tesla’s Priority in Radio and Continuous Wave Radiofrequency Apparatus". The Antique Wireless Association Review, Vol. 1, 1986.
- ↑ A. K. Sen (1997). "Sir J.C. Bose and radio science", Microwave Symposium Digest 2 (8-13), p. 557-560
- ↑ Nagai N. (1893). "Kanyaku maou seibun kenkyuu seiseki (zoku)". Yakugaku Zashi 13: 901.
- ↑ History of Property Rights - Ikeda, Kikunae
- ↑ Ikeda K (November 2002). "New seasonings". Chem. Senses 27 (9): 847–9. doi:10.1093/chemse/27.9.847. PMID 12438213. (partial translation of Ikeda, Kikunae (1909). "New Seasonings[japan.]". Journal of the Chemical Society of Tokyo 30: 820–836.)
- ↑ Jagadis Bose Research on Measurement of Plant Growth. Retrieved on 2008-08-05.
- ↑ Tokyo Kagaku Kaishi (1911)
- ↑ Who Invented The Tank? - Bovington Tank Museum
- ↑ Narlikar, J. V. (2002), An Introduction to Cosmology, p. 188, Cambridge University Press, ISBN 0521793769
- ↑ 469.0 469.1 469.2 Non-Stop Shuttle Change Toyoda Automatic Loom, Type G (Japanese). The Japan Society of Mechanical Engineers.
- ↑ Milestones:Development of Electronic Television, 1924-1941. Retrieved on June 15, 2017.
- ↑ Encyclopedia Britannica (2008), "Raman effect"
- ↑ Shanti Swarup Bhatnagar. Vigyan Prasar: Government of India.
- ↑ Magnetic properties of matter, Kotaro Honda (1928)
- ↑ Tokushichi Mishima MK Magnetic Steel.
- ↑ Permanent magnet containing copper.
- ↑ History of Research on Switching Theory in Japan, IEEJ Transactions on Fundamentals and Materials, Vol. 124 (2004) No. 8, pp. 720–726, Institute of Electrical Engineers of Japan
- ↑ Japan, Information Processing Society of. Switching Theory/Relay Circuit Network Theory/Theory of Logical Mathematics – IPSJ Computer Museum. Retrieved on 25 October 2017.
- ↑ Radomir S. Stanković (University of Niš), Jaakko T. Astola (Tampere University of Technology), Mark G. Karpovsky (Boston University), Some Historical Remarks on Switching Theory, 2007, DOI 10.1.1.66.1248
- ↑ 479.0 479.1 Radomir S. Stanković, Jaakko Astola (2008), Reprints from the Early Days of Information Sciences: TICSP Series On the Contributions of Akira Nakashima to Switching Theory, TICSP Series #40, Tampere International Center for Signal Processing, Tampere University of Technology
- ↑ Holmes, Thom. 2008. "Early Synthesizers and Experimenters". In his Electronic and Experimental Music: Technology, Music, and Culture, third edition. New York: Routledge. ISBN 978-0-415-95781-6 (cloth); ISBN 978-0-415-95782-3 (pbk), (accessed 4 June 2011), pp. 153–54 & 157
- ↑ (2013-10-22) Electronic Inventions and Discoveries: Electronics from its Earliest Beginnings to the Present Day. ISBN 9781483145211.
- ↑ Junction Field-Effect Devices, Semiconductor Devices for Power Conditioning, 1982
- ↑ [John Brockman, editor. The Greatest Inventions of the Past 2000 Years. Phoenix. 2000]
- ↑ David Lazarus (1995). 'Japan's Edison' Is Country's Gadget King : Japanese Inventor Holds Record for Patent. International Herald Tribune.
- ↑ Jack Baskin School of Engineering. (2008) Narinder Kapany, Ph.D.. UC Santa Cruz.
- ↑ Prathap, Gangan (March 2004), "Indian science slows down: The decline of open-ended research", Current Science 86 (6): 768-769 [769]
- ↑ 487.0 487.1 Jun-ichi Nishizawa: Engineer, Sophia University Special Professor (interview), Japan Quality Review, 2011
- ↑ Hecht, Jeff (2004). City of Light: The Story of Fiber Optics, revised, Oxford University, 55–70. ISBN 9780195162554.
- ↑ (1954) "A flexible fibrescope, using static scanning". Nature 173 (4392): 39–41. doi:10.1038/173039b0. Bibcode: 1954Natur.173...39H.
- ↑ Two Revolutionary Optical Technologies. Scientific Background on the Nobel Prize in Physics 2009. Nobelprize.org. 6 October 2009
- ↑ Subrata Mitra. Internet Encyclopedia of Cinematographers. Retrieved on 2009-05-22.
- ↑ Cardullo, Bert (November 2005), "Revisiting Satyajit Ray: An Interview with a Cinema Master", Bright Lights Film Journal (50), http://www.brightlightsfilm.com/50/rayiv.htm, retrieved on 24 May 2009
- ↑ 493.0 493.1 493.2 493.3 493.4 493.5 493.6 Peter Bond, Obituary: Lt-Gen Kerim Kerimov, The Independent, 7 April 2003. (Alternate URL)
- ↑ 494.0 494.1 494.2 494.3 494.4 494.5 Betty Blair (1995), "Behind Soviet Aeronauts", Azerbaijan International 3 (3).
- ↑ The Third Industrial Revolution Occurred in Sendai, Soh-VEHE International Patent Office, Japan Patent Attorneys Association
- ↑ (1971) The Amazing Laser (in en). Westminster Press, 65. ISBN 9780664340032.
- ↑ Evolution of Concrete Skyscrapers. Archived from the original on 2007-06-05.
- ↑ (2004) "Terahertz wave generation and light amplification using Raman effect", in Bhat, K. N.: Physics of semiconductor devices. New Delhi, India: Narosa Publishing House, 27. ISBN 978-81-7319-567-9.
- ↑ R Sakaguchi, S Takasu, T Akiyama. (2000 (acc. January 27, 2014)). "Study concerning the colors of tactile blocks for the visually handicapped -- Visibility for the visually handicapped and scenic congruence for those with ordinary sight and vision.". SEPT.
- ↑ 'Fast Machine With a Buck',"Pacific Star and Stripes", 7 July 1966
- ↑ 'Instant Cash with a Credit Card', "ABA Banking Journal", January 1967
- ↑ The implementation of a personal computer-based digital facsimile information distribution system – Edward C. Chung, Ohio University, November 1991, page 2
- ↑ Fax: The Principles and Practice of Facsimile Communication, Daniel M. Costigan, Chilton Book Company, 1971, pages 112–114, 213, 239
- ↑ Fine, Thomas (2008). "The Dawn of Commercial Digital Recording". ARSC Journal. Retrieved on 2010-05-02.
- ↑ Electronic Quartz Wristwatch, 1969. IEEE History Center. Retrieved on 2007-08-31.
- ↑